File size: 4,825 Bytes
33fd534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_adamax_0001_fold5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9024390243902439
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_adamax_0001_fold5

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5287
- Accuracy: 0.9024

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.662         | 1.0   | 28   | 0.4044          | 0.8537   |
| 0.1186        | 2.0   | 56   | 0.4284          | 0.8049   |
| 0.014         | 3.0   | 84   | 0.4888          | 0.9024   |
| 0.0339        | 4.0   | 112  | 0.4623          | 0.8780   |
| 0.0015        | 5.0   | 140  | 0.4160          | 0.8537   |
| 0.0005        | 6.0   | 168  | 0.4980          | 0.8537   |
| 0.0004        | 7.0   | 196  | 0.4944          | 0.9024   |
| 0.0002        | 8.0   | 224  | 0.4584          | 0.9024   |
| 0.0002        | 9.0   | 252  | 0.4587          | 0.9024   |
| 0.0002        | 10.0  | 280  | 0.4614          | 0.9024   |
| 0.0002        | 11.0  | 308  | 0.4658          | 0.9024   |
| 0.0001        | 12.0  | 336  | 0.4673          | 0.9024   |
| 0.0001        | 13.0  | 364  | 0.4741          | 0.9024   |
| 0.0001        | 14.0  | 392  | 0.4749          | 0.9024   |
| 0.0001        | 15.0  | 420  | 0.4791          | 0.9024   |
| 0.0001        | 16.0  | 448  | 0.4817          | 0.9024   |
| 0.0001        | 17.0  | 476  | 0.4846          | 0.9024   |
| 0.0001        | 18.0  | 504  | 0.4881          | 0.9024   |
| 0.0001        | 19.0  | 532  | 0.4907          | 0.9024   |
| 0.0001        | 20.0  | 560  | 0.4932          | 0.9024   |
| 0.0001        | 21.0  | 588  | 0.4952          | 0.9024   |
| 0.0001        | 22.0  | 616  | 0.4973          | 0.9024   |
| 0.0001        | 23.0  | 644  | 0.4995          | 0.9024   |
| 0.0001        | 24.0  | 672  | 0.5025          | 0.9024   |
| 0.0001        | 25.0  | 700  | 0.5047          | 0.9024   |
| 0.0001        | 26.0  | 728  | 0.5054          | 0.9024   |
| 0.0001        | 27.0  | 756  | 0.5078          | 0.9024   |
| 0.0001        | 28.0  | 784  | 0.5090          | 0.9024   |
| 0.0001        | 29.0  | 812  | 0.5119          | 0.9024   |
| 0.0001        | 30.0  | 840  | 0.5133          | 0.9024   |
| 0.0001        | 31.0  | 868  | 0.5148          | 0.9024   |
| 0.0001        | 32.0  | 896  | 0.5157          | 0.9024   |
| 0.0001        | 33.0  | 924  | 0.5187          | 0.9024   |
| 0.0001        | 34.0  | 952  | 0.5193          | 0.9024   |
| 0.0001        | 35.0  | 980  | 0.5205          | 0.9024   |
| 0.0001        | 36.0  | 1008 | 0.5218          | 0.9024   |
| 0.0           | 37.0  | 1036 | 0.5225          | 0.9024   |
| 0.0           | 38.0  | 1064 | 0.5237          | 0.9024   |
| 0.0           | 39.0  | 1092 | 0.5248          | 0.9024   |
| 0.0           | 40.0  | 1120 | 0.5253          | 0.9024   |
| 0.0           | 41.0  | 1148 | 0.5262          | 0.9024   |
| 0.0           | 42.0  | 1176 | 0.5266          | 0.9024   |
| 0.0           | 43.0  | 1204 | 0.5275          | 0.9024   |
| 0.0           | 44.0  | 1232 | 0.5280          | 0.9024   |
| 0.0           | 45.0  | 1260 | 0.5281          | 0.9024   |
| 0.0           | 46.0  | 1288 | 0.5285          | 0.9024   |
| 0.0           | 47.0  | 1316 | 0.5286          | 0.9024   |
| 0.0           | 48.0  | 1344 | 0.5287          | 0.9024   |
| 0.0           | 49.0  | 1372 | 0.5287          | 0.9024   |
| 0.0           | 50.0  | 1400 | 0.5287          | 0.9024   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0