File size: 4,802 Bytes
e59c74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_sgd_00001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.2
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_sgd_00001_fold2

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4921
- Accuracy: 0.2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5247        | 1.0   | 27   | 1.5122          | 0.1778   |
| 1.5208        | 2.0   | 54   | 1.5113          | 0.1778   |
| 1.5431        | 3.0   | 81   | 1.5104          | 0.1778   |
| 1.5874        | 4.0   | 108  | 1.5095          | 0.1778   |
| 1.5185        | 5.0   | 135  | 1.5086          | 0.1778   |
| 1.5124        | 6.0   | 162  | 1.5078          | 0.1778   |
| 1.4656        | 7.0   | 189  | 1.5070          | 0.1778   |
| 1.5113        | 8.0   | 216  | 1.5062          | 0.1778   |
| 1.5043        | 9.0   | 243  | 1.5054          | 0.1778   |
| 1.505         | 10.0  | 270  | 1.5047          | 0.1778   |
| 1.4599        | 11.0  | 297  | 1.5040          | 0.1778   |
| 1.5036        | 12.0  | 324  | 1.5033          | 0.1778   |
| 1.5237        | 13.0  | 351  | 1.5026          | 0.1778   |
| 1.511         | 14.0  | 378  | 1.5019          | 0.1778   |
| 1.5324        | 15.0  | 405  | 1.5013          | 0.1778   |
| 1.5272        | 16.0  | 432  | 1.5007          | 0.1778   |
| 1.5263        | 17.0  | 459  | 1.5002          | 0.1778   |
| 1.4937        | 18.0  | 486  | 1.4996          | 0.1778   |
| 1.5117        | 19.0  | 513  | 1.4991          | 0.1778   |
| 1.516         | 20.0  | 540  | 1.4985          | 0.1778   |
| 1.5298        | 21.0  | 567  | 1.4981          | 0.1778   |
| 1.5031        | 22.0  | 594  | 1.4976          | 0.1778   |
| 1.496         | 23.0  | 621  | 1.4971          | 0.1778   |
| 1.4984        | 24.0  | 648  | 1.4967          | 0.2      |
| 1.4849        | 25.0  | 675  | 1.4963          | 0.2      |
| 1.5277        | 26.0  | 702  | 1.4959          | 0.2      |
| 1.4813        | 27.0  | 729  | 1.4955          | 0.2      |
| 1.5008        | 28.0  | 756  | 1.4952          | 0.2      |
| 1.5143        | 29.0  | 783  | 1.4948          | 0.2      |
| 1.5063        | 30.0  | 810  | 1.4945          | 0.2      |
| 1.5197        | 31.0  | 837  | 1.4942          | 0.2      |
| 1.4689        | 32.0  | 864  | 1.4940          | 0.2      |
| 1.5261        | 33.0  | 891  | 1.4937          | 0.2      |
| 1.5047        | 34.0  | 918  | 1.4935          | 0.2      |
| 1.4608        | 35.0  | 945  | 1.4933          | 0.2      |
| 1.5134        | 36.0  | 972  | 1.4931          | 0.2      |
| 1.4999        | 37.0  | 999  | 1.4929          | 0.2      |
| 1.4901        | 38.0  | 1026 | 1.4928          | 0.2      |
| 1.4933        | 39.0  | 1053 | 1.4926          | 0.2      |
| 1.5285        | 40.0  | 1080 | 1.4925          | 0.2      |
| 1.5189        | 41.0  | 1107 | 1.4924          | 0.2      |
| 1.5357        | 42.0  | 1134 | 1.4923          | 0.2      |
| 1.5726        | 43.0  | 1161 | 1.4923          | 0.2      |
| 1.4926        | 44.0  | 1188 | 1.4922          | 0.2      |
| 1.4915        | 45.0  | 1215 | 1.4922          | 0.2      |
| 1.4934        | 46.0  | 1242 | 1.4921          | 0.2      |
| 1.5214        | 47.0  | 1269 | 1.4921          | 0.2      |
| 1.5071        | 48.0  | 1296 | 1.4921          | 0.2      |
| 1.5711        | 49.0  | 1323 | 1.4921          | 0.2      |
| 1.4665        | 50.0  | 1350 | 1.4921          | 0.2      |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0