File size: 4,821 Bytes
bc18fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_sgd_00001_fold5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.24390243902439024
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_sgd_00001_fold5

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4968
- Accuracy: 0.2439

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5975        | 1.0   | 28   | 1.5197          | 0.2195   |
| 1.5191        | 2.0   | 56   | 1.5186          | 0.2195   |
| 1.5652        | 3.0   | 84   | 1.5176          | 0.2195   |
| 1.5368        | 4.0   | 112  | 1.5166          | 0.2195   |
| 1.5533        | 5.0   | 140  | 1.5156          | 0.2195   |
| 1.5934        | 6.0   | 168  | 1.5147          | 0.2195   |
| 1.5997        | 7.0   | 196  | 1.5138          | 0.2195   |
| 1.543         | 8.0   | 224  | 1.5129          | 0.2195   |
| 1.5785        | 9.0   | 252  | 1.5120          | 0.2195   |
| 1.5476        | 10.0  | 280  | 1.5112          | 0.2195   |
| 1.5374        | 11.0  | 308  | 1.5104          | 0.2195   |
| 1.5776        | 12.0  | 336  | 1.5096          | 0.2195   |
| 1.552         | 13.0  | 364  | 1.5088          | 0.2195   |
| 1.5084        | 14.0  | 392  | 1.5081          | 0.2195   |
| 1.5475        | 15.0  | 420  | 1.5073          | 0.2195   |
| 1.5527        | 16.0  | 448  | 1.5067          | 0.2195   |
| 1.5461        | 17.0  | 476  | 1.5060          | 0.2195   |
| 1.553         | 18.0  | 504  | 1.5054          | 0.2195   |
| 1.5466        | 19.0  | 532  | 1.5047          | 0.2195   |
| 1.5068        | 20.0  | 560  | 1.5041          | 0.2195   |
| 1.5792        | 21.0  | 588  | 1.5036          | 0.2195   |
| 1.5408        | 22.0  | 616  | 1.5030          | 0.2195   |
| 1.4869        | 23.0  | 644  | 1.5025          | 0.2195   |
| 1.5203        | 24.0  | 672  | 1.5020          | 0.2439   |
| 1.5205        | 25.0  | 700  | 1.5016          | 0.2439   |
| 1.5334        | 26.0  | 728  | 1.5011          | 0.2439   |
| 1.5195        | 27.0  | 756  | 1.5007          | 0.2439   |
| 1.555         | 28.0  | 784  | 1.5003          | 0.2439   |
| 1.5231        | 29.0  | 812  | 1.4999          | 0.2439   |
| 1.5521        | 30.0  | 840  | 1.4996          | 0.2439   |
| 1.5405        | 31.0  | 868  | 1.4992          | 0.2439   |
| 1.5223        | 32.0  | 896  | 1.4989          | 0.2439   |
| 1.533         | 33.0  | 924  | 1.4986          | 0.2439   |
| 1.5569        | 34.0  | 952  | 1.4984          | 0.2439   |
| 1.5415        | 35.0  | 980  | 1.4981          | 0.2439   |
| 1.5242        | 36.0  | 1008 | 1.4979          | 0.2439   |
| 1.5342        | 37.0  | 1036 | 1.4977          | 0.2439   |
| 1.51          | 38.0  | 1064 | 1.4975          | 0.2439   |
| 1.4915        | 39.0  | 1092 | 1.4974          | 0.2439   |
| 1.533         | 40.0  | 1120 | 1.4972          | 0.2439   |
| 1.559         | 41.0  | 1148 | 1.4971          | 0.2439   |
| 1.5496        | 42.0  | 1176 | 1.4970          | 0.2439   |
| 1.5368        | 43.0  | 1204 | 1.4969          | 0.2439   |
| 1.5602        | 44.0  | 1232 | 1.4969          | 0.2439   |
| 1.5291        | 45.0  | 1260 | 1.4968          | 0.2439   |
| 1.5316        | 46.0  | 1288 | 1.4968          | 0.2439   |
| 1.5518        | 47.0  | 1316 | 1.4968          | 0.2439   |
| 1.5141        | 48.0  | 1344 | 1.4968          | 0.2439   |
| 1.515         | 49.0  | 1372 | 1.4968          | 0.2439   |
| 1.544         | 50.0  | 1400 | 1.4968          | 0.2439   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0