File size: 2,064 Bytes
c4ef698 c94e002 c4ef698 c94e002 c4ef698 e8939fe c4ef698 604f633 c4ef698 e8939fe c4ef698 604f633 c4ef698 604f633 c4ef698 604f633 c94e002 604f633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: other
library_name: transformers
tags:
- llama-factory
- full
- generated_from_trainer
base_model: hon9kon9ize/CantoneseLLM-v1.0
model-index:
- name: CantoneseLLMChat-v1.0-7B
results: []
---
# CantoneseLLMChat-v1.0-7B
![front_image](cantonese_llm_v1.jpg)
Cantonese LLM Chat v1.0 is the first generation Cantonese LLM from hon0kon9ize.
Building upon the sucess of [v0.5 preview](https://huggingface.co/hon9kon9ize/CantoneseLLMChat-v0.5), the model excels in Hong Kong related specific knowledge and Cantonese conversation.
## Model description
Base model obtained via Continuous Pre-Training of [Qwen 2.5 7B](https://huggingface.co/Qwen/Qwen2.5-7B) with 600 millions publicaly available Hong Kong news articles and Cantonese websites.
Instructions fine-tuned model trained with a dataset consists of 75,000 instrutions pairs. 45,000 pairs were Cantonese insturctions generated by other LLMs and reviewed by humans.
The model trained with 1 Nvidia H100 80GB HBM3 GPU on [Genkai Supercomputer](https://www.cc.kyushu-u.ac.jp/scp/eng/system/Genkai/hardware/).
## Basic Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
def chat(messages, temperature=0.9, max_new_tokens=200):
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to('cuda:0')
output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=False)
return response
prompt = "邊個係香港特首?"
messages = [
{"role": "system", "content": "you are a helpful assistant."},
{"role": "user", "content": prompt}
]
print(chat(messages)) # 香港特別行政區行政長官係李家超。<|im_end|>
```
|