huahua1 commited on
Commit
42c8dd6
·
verified ·
1 Parent(s): 748c9e7

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: MCG-NJU/videomae-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: videomae-base-face
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # videomae-base-face
18
+
19
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.8802
22
+ - Accuracy: 0.6944
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 5
43
+ - eval_batch_size: 5
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 1200
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:--------:|:----:|:---------------:|:--------:|
54
+ | 1.6771 | 16.0033 | 100 | 1.5844 | 0.2222 |
55
+ | 0.2052 | 33.0017 | 200 | 1.8833 | 0.4722 |
56
+ | 0.6001 | 49.005 | 300 | 1.4486 | 0.6944 |
57
+ | 0.3118 | 66.0033 | 400 | 0.1618 | 0.9722 |
58
+ | 0.0046 | 83.0017 | 500 | 2.1274 | 0.6944 |
59
+ | 0.0528 | 99.005 | 600 | 1.8246 | 0.7222 |
60
+ | 0.0174 | 116.0033 | 700 | 1.9694 | 0.7222 |
61
+ | 0.2597 | 133.0017 | 800 | 2.0549 | 0.6944 |
62
+ | 0.0505 | 149.005 | 900 | 1.9087 | 0.7222 |
63
+ | 0.0014 | 166.0033 | 1000 | 2.0244 | 0.6944 |
64
+ | 0.0324 | 183.0017 | 1100 | 1.5456 | 0.75 |
65
+ | 0.0011 | 199.005 | 1200 | 1.8802 | 0.6944 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.45.0
71
+ - Pytorch 2.4.1+cu118
72
+ - Datasets 3.0.0
73
+ - Tokenizers 0.20.0