New model from https://wandb.ai/wandb/huggingtweets/runs/2bmptuku
Browse files- README.md +15 -15
- pytorch_model.bin +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
language: en
|
3 |
-
thumbnail:
|
4 |
tags:
|
5 |
- huggingtweets
|
6 |
widget:
|
@@ -20,8 +20,8 @@ widget:
|
|
20 |
</div>
|
21 |
</div>
|
22 |
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
|
23 |
-
<div style="text-align: center; font-size: 16px; font-weight: 800">
|
24 |
-
<div style="text-align: center; font-size: 14px;">@
|
25 |
</div>
|
26 |
|
27 |
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
|
@@ -38,24 +38,24 @@ To understand how the model was developed, check the [W&B report](https://wandb.
|
|
38 |
|
39 |
## Training data
|
40 |
|
41 |
-
The model was trained on tweets from
|
42 |
|
43 |
-
| Data |
|
44 |
-
| --- |
|
45 |
-
| Tweets downloaded |
|
46 |
-
| Retweets |
|
47 |
-
| Short tweets |
|
48 |
-
| Tweets kept |
|
49 |
|
50 |
-
[Explore the data](
|
51 |
|
52 |
## Training procedure
|
53 |
|
54 |
-
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @
|
55 |
|
56 |
-
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/
|
57 |
|
58 |
-
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/
|
59 |
|
60 |
## How to use
|
61 |
|
@@ -64,7 +64,7 @@ You can use this model directly with a pipeline for text generation:
|
|
64 |
```python
|
65 |
from transformers import pipeline
|
66 |
generator = pipeline('text-generation',
|
67 |
-
model='huggingtweets/
|
68 |
generator("My dream is", num_return_sequences=5)
|
69 |
```
|
70 |
|
|
|
1 |
---
|
2 |
language: en
|
3 |
+
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
|
4 |
tags:
|
5 |
- huggingtweets
|
6 |
widget:
|
|
|
20 |
</div>
|
21 |
</div>
|
22 |
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
|
23 |
+
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk</div>
|
24 |
+
<div style="text-align: center; font-size: 14px;">@elonmusk</div>
|
25 |
</div>
|
26 |
|
27 |
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
|
|
|
38 |
|
39 |
## Training data
|
40 |
|
41 |
+
The model was trained on tweets from Elon Musk.
|
42 |
|
43 |
+
| Data | Elon Musk |
|
44 |
+
| --- | --- |
|
45 |
+
| Tweets downloaded | 3200 |
|
46 |
+
| Retweets | 147 |
|
47 |
+
| Short tweets | 952 |
|
48 |
+
| Tweets kept | 2101 |
|
49 |
|
50 |
+
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17q46j6s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
|
51 |
|
52 |
## Training procedure
|
53 |
|
54 |
+
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk's tweets.
|
55 |
|
56 |
+
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bmptuku) for full transparency and reproducibility.
|
57 |
|
58 |
+
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bmptuku/artifacts) is logged and versioned.
|
59 |
|
60 |
## How to use
|
61 |
|
|
|
64 |
```python
|
65 |
from transformers import pipeline
|
66 |
generator = pipeline('text-generation',
|
67 |
+
model='huggingtweets/elonmusk')
|
68 |
generator("My dream is", num_return_sequences=5)
|
69 |
```
|
70 |
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 510396521
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6294470390b70a602f8140a749f50abf0944115dbfb694b7c1461838181c9f16
|
3 |
size 510396521
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3183
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c884fe27aac12f049820bc3ef3e16a83818d8243034a0099e58c6c101be2176
|
3 |
size 3183
|