hungdang1610
commited on
infer file
Browse files- models/inference.py +126 -0
models/inference.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mivolo_model import MiVOLOModel
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
|
10 |
+
def download_files_to_cache(urls, file_names, cache_dir_name="age_estimation"):
|
11 |
+
def download_file(url, save_path):
|
12 |
+
response = requests.get(url, stream=True)
|
13 |
+
response.raise_for_status() # Check if the download was successful
|
14 |
+
|
15 |
+
with open(save_path, 'wb') as file:
|
16 |
+
for chunk in response.iter_content(chunk_size=8192):
|
17 |
+
file.write(chunk)
|
18 |
+
print(f"File downloaded and saved to {save_path}")
|
19 |
+
|
20 |
+
# Định nghĩa đường dẫn tới thư mục cache
|
21 |
+
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", cache_dir_name)
|
22 |
+
|
23 |
+
# Tạo thư mục cache nếu chưa tồn tại
|
24 |
+
os.makedirs(cache_dir, exist_ok=True)
|
25 |
+
|
26 |
+
# Tải các file nếu chưa tồn tại
|
27 |
+
for url, file_name in zip(urls, file_names):
|
28 |
+
save_path = os.path.join(cache_dir, file_name)
|
29 |
+
if not os.path.exists(save_path):
|
30 |
+
print(f"File {file_name} does not exist. Downloading...")
|
31 |
+
download_file(url, save_path)
|
32 |
+
else:
|
33 |
+
print(f"File {file_name} already exists at {save_path}")
|
34 |
+
|
35 |
+
# URL của các file cần tải
|
36 |
+
urls = [
|
37 |
+
"https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/best_model_weights_10.pth?download=true",
|
38 |
+
"https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/yolov8x_person_face.pt?download=true"
|
39 |
+
]
|
40 |
+
|
41 |
+
# Định nghĩa tên file tương ứng để lưu
|
42 |
+
file_names = [
|
43 |
+
"best_model_weights_10.pth",
|
44 |
+
"yolov8x_person_face.pt"
|
45 |
+
]
|
46 |
+
model_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/best_model_weights_10.pth")
|
47 |
+
detection_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/yolov8x_person_face.pt")
|
48 |
+
# Gọi hàm để tải file
|
49 |
+
download_files_to_cache(urls, file_names)
|
50 |
+
|
51 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
52 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
53 |
+
MEAN_TRAIN = 36.64
|
54 |
+
STD_TRAIN = 21.74
|
55 |
+
model = MiVOLOModel(
|
56 |
+
layers=(4, 4, 8, 2),
|
57 |
+
img_size=224,
|
58 |
+
in_chans=6,
|
59 |
+
num_classes=3,
|
60 |
+
patch_size=8,
|
61 |
+
stem_hidden_dim=64,
|
62 |
+
embed_dims=(192, 384, 384, 384),
|
63 |
+
num_heads=(6, 12, 12, 12),
|
64 |
+
).to('cpu')
|
65 |
+
state = torch.load(model_path, map_location="cpu")
|
66 |
+
model.load_state_dict(state, strict=True)
|
67 |
+
# model = torch.load("models/model.pth")
|
68 |
+
transform_infer = transforms.Compose([
|
69 |
+
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
|
70 |
+
transforms.ToTensor(),
|
71 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
72 |
+
])
|
73 |
+
detector = YOLO(detection_path)
|
74 |
+
def chunk_then_stack(image):
|
75 |
+
# image = Image.open(image_path).convert("RGB")
|
76 |
+
image_np = np.array(image)
|
77 |
+
results = detector.predict(image_np, conf=0.35)
|
78 |
+
for result in results:
|
79 |
+
boxes = result.boxes
|
80 |
+
|
81 |
+
# Khởi tạo các giá trị ban đầu
|
82 |
+
face_coords = [None, None, None, None]
|
83 |
+
person_coords = [None, None, None, None]
|
84 |
+
|
85 |
+
# Lấy tọa độ của bounding boxes
|
86 |
+
for i, box in enumerate(boxes.xyxy):
|
87 |
+
cls = int(boxes.cls[i].item())
|
88 |
+
x_min, y_min, x_max, y_max = map(int, box.tolist()) # Chuyển tọa độ sang int
|
89 |
+
|
90 |
+
# Lưu tọa độ vào đúng trường tương ứng
|
91 |
+
if cls == 1: # Face
|
92 |
+
face_coords = [x_min, y_min, x_max, y_max]
|
93 |
+
elif cls == 0: # Person
|
94 |
+
person_coords = [x_min, y_min, x_max, y_max]
|
95 |
+
|
96 |
+
return face_coords, person_coords
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def tranfer_image(image):
|
101 |
+
# image = Image.open(img_path).convert('RGB')
|
102 |
+
face_coords, person_coords = chunk_then_stack(image)
|
103 |
+
face_image = image.crop((int(face_coords[0]), int(face_coords[1]), int(face_coords[2]), int(face_coords[3])))
|
104 |
+
|
105 |
+
person_image = image.crop((int(person_coords[0]), int(person_coords[1]), int(person_coords[2]), int(person_coords[3])))
|
106 |
+
|
107 |
+
# Resize ảnh về (224, 224)
|
108 |
+
face_image = face_image.resize((224, 224))
|
109 |
+
person_image = person_image.resize((224, 224))
|
110 |
+
face_image = transform_infer(face_image)
|
111 |
+
person_image = transform_infer(person_image)
|
112 |
+
|
113 |
+
|
114 |
+
image_ = torch.cat((face_image, person_image), dim=0)
|
115 |
+
return image_.unsqueeze(0)
|
116 |
+
|
117 |
+
image = Image.open("1.jpg").convert('RGB')
|
118 |
+
image_ = tranfer_image(image)
|
119 |
+
print(image_.shape)
|
120 |
+
import time
|
121 |
+
start_time = time.time()
|
122 |
+
output = model(image_)
|
123 |
+
output_mse = output[:, 2]
|
124 |
+
predicted_age = output_mse.item() *STD_TRAIN + MEAN_TRAIN
|
125 |
+
print("inference time: ", time.time() - start_time)
|
126 |
+
print("predicted_age: ", predicted_age)
|