File size: 48,392 Bytes
c02da03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

from __future__ import annotations
from typing import Optional, Callable
import torch
import copy
import inspect
import logging
import uuid
import collections
import math

import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
import comfy.hooks
import comfy.patcher_extension
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
from comfy.comfy_types import UnetWrapperFunction

def string_to_seed(data):
    crc = 0xFFFFFFFF
    for byte in data:
        if isinstance(byte, str):
            byte = ord(byte)
        crc ^= byte
        for _ in range(8):
            if crc & 1:
                crc = (crc >> 1) ^ 0xEDB88320
            else:
                crc >>= 1
    return crc ^ 0xFFFFFFFF

def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
    to = model_options["transformer_options"].copy()

    if "patches_replace" not in to:
        to["patches_replace"] = {}
    else:
        to["patches_replace"] = to["patches_replace"].copy()

    if name not in to["patches_replace"]:
        to["patches_replace"][name] = {}
    else:
        to["patches_replace"][name] = to["patches_replace"][name].copy()

    if transformer_index is not None:
        block = (block_name, number, transformer_index)
    else:
        block = (block_name, number)
    to["patches_replace"][name][block] = patch
    model_options["transformer_options"] = to
    return model_options

def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options

def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options

def create_model_options_clone(orig_model_options: dict):
    return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
        
def create_hook_patches_clone(orig_hook_patches):
    new_hook_patches = {}
    for hook_ref in orig_hook_patches:
        new_hook_patches[hook_ref] = {}
        for k in orig_hook_patches[hook_ref]:
            new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
    return new_hook_patches

def wipe_lowvram_weight(m):
    if hasattr(m, "prev_comfy_cast_weights"):
        m.comfy_cast_weights = m.prev_comfy_cast_weights
        del m.prev_comfy_cast_weights
    m.weight_function = None
    m.bias_function = None

class LowVramPatch:
    def __init__(self, key, patches):
        self.key = key
        self.patches = patches
    def __call__(self, weight):
        intermediate_dtype = weight.dtype
        if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
            intermediate_dtype = torch.float32
            return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))

        return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)

def get_key_weight(model, key):
    set_func = None
    convert_func = None
    op_keys = key.rsplit('.', 1)
    if len(op_keys) < 2:
        weight = comfy.utils.get_attr(model, key)
    else:
        op = comfy.utils.get_attr(model, op_keys[0])
        try:
            set_func = getattr(op, "set_{}".format(op_keys[1]))
        except AttributeError:
            pass

        try:
            convert_func = getattr(op, "convert_{}".format(op_keys[1]))
        except AttributeError:
            pass

        weight = getattr(op, op_keys[1])
        if convert_func is not None:
            weight = comfy.utils.get_attr(model, key)

    return weight, set_func, convert_func

class AutoPatcherEjector:
    def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False):
        self.model = model
        self.was_injected = False
        self.prev_skip_injection = False
        self.skip_and_inject_on_exit_only = skip_and_inject_on_exit_only
    
    def __enter__(self):
        self.was_injected = False
        self.prev_skip_injection = self.model.skip_injection
        if self.skip_and_inject_on_exit_only:
            self.model.skip_injection = True
        if self.model.is_injected:
            self.model.eject_model()
            self.was_injected = True

    def __exit__(self, *args):
        if self.skip_and_inject_on_exit_only:
            self.model.skip_injection = self.prev_skip_injection
            self.model.inject_model()
        if self.was_injected and not self.model.skip_injection:
            self.model.inject_model()
        self.model.skip_injection = self.prev_skip_injection

class MemoryCounter:
    def __init__(self, initial: int, minimum=0):
        self.value = initial
        self.minimum = minimum
        # TODO: add a safe limit besides 0
    
    def use(self, weight: torch.Tensor):
        weight_size = weight.nelement() * weight.element_size()
        if self.is_useable(weight_size):
            self.decrement(weight_size)
            return True
        return False

    def is_useable(self, used: int):
        return self.value - used > self.minimum

    def decrement(self, used: int):
        self.value -= used

class ModelPatcher:
    def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
        self.size = size
        self.model = model
        if not hasattr(self.model, 'device'):
            logging.debug("Model doesn't have a device attribute.")
            self.model.device = offload_device
        elif self.model.device is None:
            self.model.device = offload_device

        self.patches = {}
        self.backup = {}
        self.object_patches = {}
        self.object_patches_backup = {}
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        self.weight_inplace_update = weight_inplace_update
        self.patches_uuid = uuid.uuid4()
        self.parent = None

        self.attachments: dict[str] = {}
        self.additional_models: dict[str, list[ModelPatcher]] = {}
        self.callbacks: dict[str, dict[str, list[Callable]]] = CallbacksMP.init_callbacks()
        self.wrappers: dict[str, dict[str, list[Callable]]] = WrappersMP.init_wrappers()

        self.is_injected = False
        self.skip_injection = False
        self.injections: dict[str, list[PatcherInjection]] = {}

        self.hook_patches: dict[comfy.hooks._HookRef] = {}
        self.hook_patches_backup: dict[comfy.hooks._HookRef] = {}
        self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {}
        self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {}
        self.current_hooks: Optional[comfy.hooks.HookGroup] = None
        self.forced_hooks: Optional[comfy.hooks.HookGroup] = None  # NOTE: only used for CLIP at this time
        self.is_clip = False
        self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed

        if not hasattr(self.model, 'model_loaded_weight_memory'):
            self.model.model_loaded_weight_memory = 0

        if not hasattr(self.model, 'lowvram_patch_counter'):
            self.model.lowvram_patch_counter = 0

        if not hasattr(self.model, 'model_lowvram'):
            self.model.model_lowvram = False

        if not hasattr(self.model, 'current_weight_patches_uuid'):
            self.model.current_weight_patches_uuid = None

    def model_size(self):
        if self.size > 0:
            return self.size
        self.size = comfy.model_management.module_size(self.model)
        return self.size

    def loaded_size(self):
        return self.model.model_loaded_weight_memory

    def lowvram_patch_counter(self):
        return self.model.lowvram_patch_counter

    def clone(self):
        n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
        n.patches_uuid = self.patches_uuid

        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
        n.parent = self

        # attachments
        n.attachments = {}
        for k in self.attachments:
            if hasattr(self.attachments[k], "on_model_patcher_clone"):
                n.attachments[k] = self.attachments[k].on_model_patcher_clone()
            else:
                n.attachments[k] = self.attachments[k]
        # additional models
        for k, c in self.additional_models.items():
            n.additional_models[k] = [x.clone() for x in c]
        # callbacks
        for k, c in self.callbacks.items():
            n.callbacks[k] = {}
            for k1, c1 in c.items():
                n.callbacks[k][k1] = c1.copy()
        # sample wrappers
        for k, w in self.wrappers.items():
            n.wrappers[k] = {}
            for k1, w1 in w.items():
                n.wrappers[k][k1] = w1.copy()
        # injection
        n.is_injected = self.is_injected
        n.skip_injection = self.skip_injection
        for k, i in self.injections.items():
            n.injections[k] = i.copy()
        # hooks
        n.hook_patches = create_hook_patches_clone(self.hook_patches)
        n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup)
        for group in self.cached_hook_patches:
            n.cached_hook_patches[group] = {}
            for k in self.cached_hook_patches[group]:
                n.cached_hook_patches[group][k] = self.cached_hook_patches[group][k]
        n.hook_backup = self.hook_backup
        n.current_hooks = self.current_hooks.clone() if self.current_hooks else self.current_hooks
        n.forced_hooks = self.forced_hooks.clone() if self.forced_hooks else self.forced_hooks
        n.is_clip = self.is_clip
        n.hook_mode = self.hook_mode

        for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
            callback(self, n)
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

    def clone_has_same_weights(self, clone: 'ModelPatcher'):
        if not self.is_clone(clone):
            return False

        if self.current_hooks != clone.current_hooks:
            return False
        if self.forced_hooks != clone.forced_hooks:
            return False
        if self.hook_patches.keys() != clone.hook_patches.keys():
            return False
        if self.attachments.keys() != clone.attachments.keys():
            return False
        if self.additional_models.keys() != clone.additional_models.keys():
            return False
        for key in self.callbacks:
            if len(self.callbacks[key]) != len(clone.callbacks[key]):
                return False
        for key in self.wrappers:
            if len(self.wrappers[key]) != len(clone.wrappers[key]):
                return False
        if self.injections.keys() != clone.injections.keys():
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True

    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)

    def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)

    def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
        self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)

    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

    def set_model_emb_patch(self, patch):
        self.set_model_patch(patch, "emb_patch")

    def set_model_forward_timestep_embed_patch(self, patch):
        self.set_model_patch(patch, "forward_timestep_embed_patch")

    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return comfy.utils.get_attr(self.model, name)

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
            if hasattr(wrap_func, "to"):
                self.model_options["model_function_wrapper"] = wrap_func.to(device)

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        with self.use_ejected():
            p = set()
            model_sd = self.model.state_dict()
            for k in patches:
                offset = None
                function = None
                if isinstance(k, str):
                    key = k
                else:
                    offset = k[1]
                    key = k[0]
                    if len(k) > 2:
                        function = k[2]

                if key in model_sd:
                    p.add(k)
                    current_patches = self.patches.get(key, [])
                    current_patches.append((strength_patch, patches[k], strength_model, offset, function))
                    self.patches[key] = current_patches

            self.patches_uuid = uuid.uuid4()
            return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            bk = self.backup.get(k, None)
            hbk = self.hook_backup.get(k, None)
            weight, set_func, convert_func = get_key_weight(self.model, k)
            if bk is not None:
                weight = bk.weight
            if hbk is not None:
                weight = hbk[0]
            if convert_func is None:
                convert_func = lambda a, **kwargs: a

            if k in self.patches:
                p[k] = [(weight, convert_func)] + self.patches[k]
            else:
                p[k] = [(weight, convert_func)]
        return p

    def model_state_dict(self, filter_prefix=None):
        with self.use_ejected():
            sd = self.model.state_dict()
            keys = list(sd.keys())
            if filter_prefix is not None:
                for k in keys:
                    if not k.startswith(filter_prefix):
                        sd.pop(k)
            return sd

    def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
        if key not in self.patches:
            return

        weight, set_func, convert_func = get_key_weight(self.model, key)
        inplace_update = self.weight_inplace_update or inplace_update

        if key not in self.backup:
            self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        if convert_func is not None:
            temp_weight = convert_func(temp_weight, inplace=True)

        out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
        if set_func is None:
            out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
            if inplace_update:
                comfy.utils.copy_to_param(self.model, key, out_weight)
            else:
                comfy.utils.set_attr_param(self.model, key, out_weight)
        else:
            set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))

    def _load_list(self):
        loading = []
        for n, m in self.model.named_modules():
            params = []
            skip = False
            for name, param in m.named_parameters(recurse=False):
                params.append(name)
            for name, param in m.named_parameters(recurse=True):
                if name not in params:
                    skip = True # skip random weights in non leaf modules
                    break
            if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
                loading.append((comfy.model_management.module_size(m), n, m, params))
        return loading

    def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
        with self.use_ejected():
            self.unpatch_hooks()
            mem_counter = 0
            patch_counter = 0
            lowvram_counter = 0
            loading = self._load_list()

            load_completely = []
            loading.sort(reverse=True)
            for x in loading:
                n = x[1]
                m = x[2]
                params = x[3]
                module_mem = x[0]

                lowvram_weight = False

                if not full_load and hasattr(m, "comfy_cast_weights"):
                    if mem_counter + module_mem >= lowvram_model_memory:
                        lowvram_weight = True
                        lowvram_counter += 1
                        if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
                            continue

                weight_key = "{}.weight".format(n)
                bias_key = "{}.bias".format(n)

                if lowvram_weight:
                    if weight_key in self.patches:
                        if force_patch_weights:
                            self.patch_weight_to_device(weight_key)
                        else:
                            m.weight_function = LowVramPatch(weight_key, self.patches)
                            patch_counter += 1
                    if bias_key in self.patches:
                        if force_patch_weights:
                            self.patch_weight_to_device(bias_key)
                        else:
                            m.bias_function = LowVramPatch(bias_key, self.patches)
                            patch_counter += 1

                    m.prev_comfy_cast_weights = m.comfy_cast_weights
                    m.comfy_cast_weights = True
                else:
                    if hasattr(m, "comfy_cast_weights"):
                        if m.comfy_cast_weights:
                            wipe_lowvram_weight(m)

                    if full_load or mem_counter + module_mem < lowvram_model_memory:
                        mem_counter += module_mem
                        load_completely.append((module_mem, n, m, params))

            load_completely.sort(reverse=True)
            for x in load_completely:
                n = x[1]
                m = x[2]
                params = x[3]
                if hasattr(m, "comfy_patched_weights"):
                    if m.comfy_patched_weights == True:
                        continue

                for param in params:
                    self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)

                logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
                m.comfy_patched_weights = True

            for x in load_completely:
                x[2].to(device_to)

            if lowvram_counter > 0:
                logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
                self.model.model_lowvram = True
            else:
                logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
                self.model.model_lowvram = False
                if full_load:
                    self.model.to(device_to)
                    mem_counter = self.model_size()

            self.model.lowvram_patch_counter += patch_counter
            self.model.device = device_to
            self.model.model_loaded_weight_memory = mem_counter
            self.model.current_weight_patches_uuid = self.patches_uuid

            for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
                callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)

            self.apply_hooks(self.forced_hooks, force_apply=True)

    def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
        with self.use_ejected():
            for k in self.object_patches:
                old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
                if k not in self.object_patches_backup:
                    self.object_patches_backup[k] = old

            if lowvram_model_memory == 0:
                full_load = True
            else:
                full_load = False

            if load_weights:
                self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
        self.inject_model()
        return self.model

    def unpatch_model(self, device_to=None, unpatch_weights=True):
        self.eject_model()
        if unpatch_weights:
            self.unpatch_hooks()
            if self.model.model_lowvram:
                for m in self.model.modules():
                    wipe_lowvram_weight(m)

                self.model.model_lowvram = False
                self.model.lowvram_patch_counter = 0

            keys = list(self.backup.keys())

            for k in keys:
                bk = self.backup[k]
                if bk.inplace_update:
                    comfy.utils.copy_to_param(self.model, k, bk.weight)
                else:
                    comfy.utils.set_attr_param(self.model, k, bk.weight)

            self.model.current_weight_patches_uuid = None
            self.backup.clear()

            if device_to is not None:
                self.model.to(device_to)
                self.model.device = device_to
            self.model.model_loaded_weight_memory = 0

            for m in self.model.modules():
                if hasattr(m, "comfy_patched_weights"):
                    del m.comfy_patched_weights

        keys = list(self.object_patches_backup.keys())
        for k in keys:
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])

        self.object_patches_backup.clear()

    def partially_unload(self, device_to, memory_to_free=0):
        with self.use_ejected():
            memory_freed = 0
            patch_counter = 0
            unload_list = self._load_list()
            unload_list.sort()
            for unload in unload_list:
                if memory_to_free < memory_freed:
                    break
                module_mem = unload[0]
                n = unload[1]
                m = unload[2]
                params = unload[3]

                lowvram_possible = hasattr(m, "comfy_cast_weights")
                if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
                    move_weight = True
                    for param in params:
                        key = "{}.{}".format(n, param)
                        bk = self.backup.get(key, None)
                        if bk is not None:
                            if not lowvram_possible:
                                move_weight = False
                                break

                            if bk.inplace_update:
                                comfy.utils.copy_to_param(self.model, key, bk.weight)
                            else:
                                comfy.utils.set_attr_param(self.model, key, bk.weight)
                            self.backup.pop(key)
                    
                    weight_key = "{}.weight".format(n)
                    bias_key = "{}.bias".format(n)
                    if move_weight:
                        m.to(device_to)
                        if lowvram_possible:
                            if weight_key in self.patches:
                                m.weight_function = LowVramPatch(weight_key, self.patches)
                                patch_counter += 1
                            if bias_key in self.patches:
                                m.bias_function = LowVramPatch(bias_key, self.patches)
                                patch_counter += 1

                            m.prev_comfy_cast_weights = m.comfy_cast_weights
                            m.comfy_cast_weights = True
                        m.comfy_patched_weights = False
                        memory_freed += module_mem
                        logging.debug("freed {}".format(n))

            self.model.model_lowvram = True
            self.model.lowvram_patch_counter += patch_counter
            self.model.model_loaded_weight_memory -= memory_freed
            return memory_freed

    def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
        with self.use_ejected(skip_and_inject_on_exit_only=True):
            unpatch_weights = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid or force_patch_weights)
            # TODO: force_patch_weights should not unload + reload full model
            used = self.model.model_loaded_weight_memory
            self.unpatch_model(self.offload_device, unpatch_weights=unpatch_weights)
            if unpatch_weights:
                extra_memory += (used - self.model.model_loaded_weight_memory)

            self.patch_model(load_weights=False)
            full_load = False
            if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
                self.apply_hooks(self.forced_hooks, force_apply=True)
                return 0
            if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
                full_load = True
            current_used = self.model.model_loaded_weight_memory
            try:
                self.load(device_to, lowvram_model_memory=current_used + extra_memory, force_patch_weights=force_patch_weights, full_load=full_load)
            except Exception as e:
                self.detach()
                raise e

            return self.model.model_loaded_weight_memory - current_used

    def detach(self, unpatch_all=True):
        self.eject_model()
        self.model_patches_to(self.offload_device)
        if unpatch_all:
            self.unpatch_model(self.offload_device, unpatch_weights=unpatch_all)
        for callback in self.get_all_callbacks(CallbacksMP.ON_DETACH):
            callback(self, unpatch_all)
        return self.model

    def current_loaded_device(self):
        return self.model.device

    def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
        print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
        return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)

    def cleanup(self):
        self.clean_hooks()
        if hasattr(self.model, "current_patcher"):
            self.model.current_patcher = None
        for callback in self.get_all_callbacks(CallbacksMP.ON_CLEANUP):
            callback(self)

    def add_callback(self, call_type: str, callback: Callable):
        self.add_callback_with_key(call_type, None, callback)

    def add_callback_with_key(self, call_type: str, key: str, callback: Callable):
        c = self.callbacks.setdefault(call_type, {}).setdefault(key, [])
        c.append(callback)
    
    def remove_callbacks_with_key(self, call_type: str, key: str):
        c = self.callbacks.get(call_type, {})
        if key in c:
            c.pop(key)

    def get_callbacks(self, call_type: str, key: str):
        return self.callbacks.get(call_type, {}).get(key, [])
    
    def get_all_callbacks(self, call_type: str):
        c_list = []
        for c in self.callbacks.get(call_type, {}).values():
            c_list.extend(c)
        return c_list

    def add_wrapper(self, wrapper_type: str, wrapper: Callable):
        self.add_wrapper_with_key(wrapper_type, None, wrapper)

    def add_wrapper_with_key(self, wrapper_type: str, key: str, wrapper: Callable):
        w = self.wrappers.setdefault(wrapper_type, {}).setdefault(key, [])
        w.append(wrapper)
    
    def remove_wrappers_with_key(self, wrapper_type: str, key: str):
        w = self.wrappers.get(wrapper_type, {})
        if key in w:
            w.pop(key)

    def get_wrappers(self, wrapper_type: str, key: str):
        return self.wrappers.get(wrapper_type, {}).get(key, [])

    def get_all_wrappers(self, wrapper_type: str):
        w_list = []
        for w in self.wrappers.get(wrapper_type, {}).values():
            w_list.extend(w)
        return w_list

    def set_attachments(self, key: str, attachment):
        self.attachments[key] = attachment

    def remove_attachments(self, key: str):
        if key in self.attachments:
            self.attachments.pop(key)
    
    def get_attachment(self, key: str):
        return self.attachments.get(key, None)

    def set_injections(self, key: str, injections: list[PatcherInjection]):
        self.injections[key] = injections

    def remove_injections(self, key: str):
        if key in self.injections:
            self.injections.pop(key)

    def set_additional_models(self, key: str, models: list['ModelPatcher']):
        self.additional_models[key] = models

    def remove_additional_models(self, key: str):
        if key in self.additional_models:
            self.additional_models.pop(key)

    def get_additional_models_with_key(self, key: str):
        return self.additional_models.get(key, [])
    
    def get_additional_models(self):
        all_models = []
        for models in self.additional_models.values():
            all_models.extend(models)
        return all_models

    def get_nested_additional_models(self):
        def _evaluate_sub_additional_models(prev_models: list[ModelPatcher], cache_set: set[ModelPatcher]):
            '''Make sure circular references do not cause infinite recursion.'''
            next_models = []
            for model in prev_models:
                candidates = model.get_additional_models()
                for c in candidates:
                    if c not in cache_set:
                        next_models.append(c)
                        cache_set.add(c)
            if len(next_models) == 0:
                return prev_models
            return prev_models + _evaluate_sub_additional_models(next_models, cache_set)

        all_models = self.get_additional_models()
        models_set = set(all_models)
        real_all_models = _evaluate_sub_additional_models(prev_models=all_models, cache_set=models_set)
        return real_all_models

    def use_ejected(self, skip_and_inject_on_exit_only=False):
        return AutoPatcherEjector(self, skip_and_inject_on_exit_only=skip_and_inject_on_exit_only)

    def inject_model(self):
        if self.is_injected or self.skip_injection:
            return
        for injections in self.injections.values():
            for inj in injections:
                inj.inject(self)
                self.is_injected = True
        if self.is_injected:
            for callback in self.get_all_callbacks(CallbacksMP.ON_INJECT_MODEL):
                callback(self)

    def eject_model(self):
        if not self.is_injected:
            return
        for injections in self.injections.values():
            for inj in injections:
                inj.eject(self)
        self.is_injected = False
        for callback in self.get_all_callbacks(CallbacksMP.ON_EJECT_MODEL):
            callback(self)

    def pre_run(self):
        if hasattr(self.model, "current_patcher"):
            self.model.current_patcher = self
        for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
            callback(self)
    
    def prepare_state(self, timestep):
        for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
            callback(self, timestep)

    def restore_hook_patches(self):
        if len(self.hook_patches_backup) > 0:
            self.hook_patches = self.hook_patches_backup
            self.hook_patches_backup = {}

    def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode):
        self.hook_mode = hook_mode
    
    def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup):
        curr_t = t[0]
        reset_current_hooks = False
        for hook in hook_group.hooks:
            changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t)
            # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
            # this will cause the weights to be recalculated when sampling
            if changed:
                # reset current_hooks if contains hook that changed
                if self.current_hooks is not None:
                    for current_hook in self.current_hooks.hooks:
                        if current_hook == hook:
                            reset_current_hooks = True
                            break
                for cached_group in list(self.cached_hook_patches.keys()):
                    if cached_group.contains(hook):
                        self.cached_hook_patches.pop(cached_group)
        if reset_current_hooks:
            self.patch_hooks(None)

    def register_all_hook_patches(self, hooks_dict: dict[comfy.hooks.EnumHookType, dict[comfy.hooks.Hook, None]], target: comfy.hooks.EnumWeightTarget, model_options: dict=None):
        self.restore_hook_patches()
        registered_hooks: list[comfy.hooks.Hook] = []
        # handle WrapperHooks, if model_options provided
        if model_options is not None:
            for hook in hooks_dict.get(comfy.hooks.EnumHookType.Wrappers, {}):
                hook.add_hook_patches(self, model_options, target, registered_hooks)
        # handle WeightHooks
        weight_hooks_to_register: list[comfy.hooks.WeightHook] = []
        for hook in hooks_dict.get(comfy.hooks.EnumHookType.Weight, {}):
            if hook.hook_ref not in self.hook_patches:
                weight_hooks_to_register.append(hook)
        if len(weight_hooks_to_register) > 0:
            # clone hook_patches to become backup so that any non-dynamic hooks will return to their original state
            self.hook_patches_backup = create_hook_patches_clone(self.hook_patches)
            for hook in weight_hooks_to_register:
                hook.add_hook_patches(self, model_options, target, registered_hooks)
        for callback in self.get_all_callbacks(CallbacksMP.ON_REGISTER_ALL_HOOK_PATCHES):
            callback(self, hooks_dict, target)

    def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0):
        with self.use_ejected():
            # NOTE: this mirrors behavior of add_patches func
            current_hook_patches: dict[str,list] = self.hook_patches.get(hook.hook_ref, {})
            p = set()
            model_sd = self.model.state_dict()
            for k in patches:
                offset = None
                function = None
                if isinstance(k, str):
                    key = k
                else:
                    offset = k[1]
                    key = k[0]
                    if len(k) > 2:
                        function = k[2]
                
                if key in model_sd:
                    p.add(k)
                    current_patches: list[tuple] = current_hook_patches.get(key, [])
                    current_patches.append((strength_patch, patches[k], strength_model, offset, function))
                    current_hook_patches[key] = current_patches
            self.hook_patches[hook.hook_ref] = current_hook_patches
            # since should care about these patches too to determine if same model, reroll patches_uuid
            self.patches_uuid = uuid.uuid4()
            return list(p)

    def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup):
        # combined_patches will contain  weights of all relevant hooks, per key
        combined_patches = {}
        if hooks is not None:
            for hook in hooks.hooks:
                hook_patches: dict = self.hook_patches.get(hook.hook_ref, {})
                for key in hook_patches.keys():
                    current_patches: list[tuple] = combined_patches.get(key, [])
                    if math.isclose(hook.strength, 1.0):
                        current_patches.extend(hook_patches[key])
                    else:
                        # patches are stored as tuples: (strength_patch, (tuple_with_weights,), strength_model)
                        for patch in hook_patches[key]:
                            new_patch = list(patch)
                            new_patch[0] *= hook.strength
                            current_patches.append(tuple(new_patch))
                    combined_patches[key] = current_patches
        return combined_patches

    def apply_hooks(self, hooks: comfy.hooks.HookGroup, transformer_options: dict=None, force_apply=False):
        # TODO: return transformer_options dict with any additions from hooks
        if self.current_hooks == hooks and (not force_apply or (not self.is_clip and hooks is None)):
            return {}
        self.patch_hooks(hooks=hooks)
        for callback in self.get_all_callbacks(CallbacksMP.ON_APPLY_HOOKS):
            callback(self, hooks)
        return {}

    def patch_hooks(self, hooks: comfy.hooks.HookGroup):
        with self.use_ejected():
            self.unpatch_hooks()
            if hooks is not None:
                model_sd_keys = list(self.model_state_dict().keys())
                memory_counter = None
                if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
                    # TODO: minimum_counter should have a minimum that conforms to loaded model requirements
                    memory_counter = MemoryCounter(initial=comfy.model_management.get_free_memory(self.load_device),
                                                minimum=comfy.model_management.minimum_inference_memory()*2)
                # if have cached weights for hooks, use it
                cached_weights = self.cached_hook_patches.get(hooks, None)
                if cached_weights is not None:
                    for key in cached_weights:
                        if key not in model_sd_keys:
                            print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
                            continue
                        self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
                else:
                    relevant_patches = self.get_combined_hook_patches(hooks=hooks)
                    original_weights = None
                    if len(relevant_patches) > 0:
                        original_weights = self.get_key_patches()
                    for key in relevant_patches:
                        if key not in model_sd_keys:
                            print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
                            continue
                        self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
                                                            memory_counter=memory_counter)
            self.current_hooks = hooks

    def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
        if key not in self.hook_backup:
            weight: torch.Tensor = comfy.utils.get_attr(self.model, key)
            target_device = self.offload_device
            if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
                used = memory_counter.use(weight)
                if used:
                    target_device = weight.device
            self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
        comfy.utils.copy_to_param(self.model, key, cached_weights[key][0].to(device=cached_weights[key][1]))

    def clear_cached_hook_weights(self):
        self.cached_hook_patches.clear()
        self.patch_hooks(None)

    def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter):
        if key not in combined_patches:
            return
        
        weight, set_func, convert_func = get_key_weight(self.model, key)
        weight: torch.Tensor
        if key not in self.hook_backup:
            target_device = self.offload_device
            if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
                used = memory_counter.use(weight)
                if used:
                    target_device = weight.device
            self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
        # TODO: properly handle LowVramPatch, if it ends up an issue
        temp_weight = comfy.model_management.cast_to_device(weight, weight.device, torch.float32, copy=True)
        if convert_func is not None:
            temp_weight = convert_func(temp_weight, inplace=True)

        out_weight = comfy.lora.calculate_weight(combined_patches[key],
                                                 temp_weight,
                                                 key, original_weights=original_weights)
        del original_weights[key]
        if set_func is None:
            out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            set_func(out_weight, inplace_update=True, seed=string_to_seed(key))
        if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
            # TODO: disable caching if not enough system RAM to do so
            target_device = self.offload_device
            used = memory_counter.use(weight)
            if used:
                target_device = weight.device
            self.cached_hook_patches.setdefault(hooks, {})
            self.cached_hook_patches[hooks][key] = (out_weight.to(device=target_device, copy=False), weight.device)
        del temp_weight
        del out_weight
        del weight
    
    def unpatch_hooks(self) -> None:
        with self.use_ejected():
            if len(self.hook_backup) == 0:
                self.current_hooks = None
                return
            keys = list(self.hook_backup.keys())
            for k in keys:
                comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
                    
            self.hook_backup.clear()
            self.current_hooks = None

    def clean_hooks(self):
        self.unpatch_hooks()
        self.clear_cached_hook_weights()

    def __del__(self):
        self.detach(unpatch_all=False)