huudan123 commited on
Commit
4b51a41
·
verified ·
1 Parent(s): 6a500a4

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huudan123/model_stage3_2_score
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:96895
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: 'Gorgich và Pashtoon bị xử tử trong tù. '
27
+ sentences:
28
+ - Chỉ trích Mubarak của Ai Cập
29
+ - NKorea xử tử chú của Kim Jong Un
30
+ - 'Phiến quân thân Nga bắn rơi máy bay Malaysia: Ukraine'
31
+ - source_sentence: LHQ quan ngại về khả năng vũ khí hóa học của Syria
32
+ sentences:
33
+ - Nhân viên bệnh viện Texas xét nghiệm dương tính với Ebola
34
+ - Mỹ và Nga đạt thỏa thuận về vũ khí hóa học của Syria
35
+ - Một nảy trên tấm bạt lò xo.
36
+ - source_sentence: Chủ tịch Trung Quốc đến Argentina thăm cấp nhà nước
37
+ sentences:
38
+ - Ông Hollande đến thăm cấp nhà nước Mỹ
39
+ - Bão tuyết tấn công vùng Đông Bắc nước Mỹ, năm người chết, 700.000 người mất điện
40
+ - Một con chim lớn đang bay trong không trung.
41
+ - source_sentence: Syria triển khai thêm quân bất chấp thỏa thuận hòa bình
42
+ sentences:
43
+ - Một cậu bé đang chơi với một.
44
+ - Cả phiến quân và lực lượng chính phủ đều bị cáo buộc cướp bóc các ngôi làng ở
45
+ vùng nông thôn Liberia bất chấp thỏa thuận hòa bình.
46
+ - Một người đàn ông đang thổi sáo.
47
+ - source_sentence: Một người đàn ông đang lắp ráp các bộ phận loa.
48
+ sentences:
49
+ - Một người đàn ông đang đi bộ trên vỉa hè.
50
+ - Không phải là một câu trả lời thực sự cho câu hỏi của bạn, nhưng có lẽ nó sẽ giúp.
51
+ - Một người đàn ông phun nước từ vòi cho một người đàn ông khác.
52
+ model-index:
53
+ - name: SentenceTransformer based on huudan123/model_stage3_2_score
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts evaluator
60
+ type: sts-evaluator
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.3815738041383691
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.382323329830821
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.4198450446326336
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.4097830682280972
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.4195429740858371
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.40938489178823334
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.2588766748845407
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.26733997459061914
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.4198450446326336
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.4097830682280972
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer based on huudan123/model_stage3_2_score
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage3_2_score](https://huggingface.co/huudan123/model_stage3_2_score). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [huudan123/model_stage3_2_score](https://huggingface.co/huudan123/model_stage3_2_score) <!-- at revision 670784ce0e1295612bf239e706cfa9751b66ab24 -->
103
+ - **Maximum Sequence Length:** 512 tokens
104
+ - **Output Dimensionality:** 768 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("huudan123/model_stage4")
141
+ # Run inference
142
+ sentences = [
143
+ 'Một người đàn ông đang lắp ráp các bộ phận loa.',
144
+ 'Một người đàn ông đang đi bộ trên vỉa hè.',
145
+ 'Một người đàn ông phun nước từ vòi cho một người đàn ông khác.',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 768]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+ * Dataset: `sts-evaluator`
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:-------------------|:-----------|
191
+ | pearson_cosine | 0.3816 |
192
+ | spearman_cosine | 0.3823 |
193
+ | pearson_manhattan | 0.4198 |
194
+ | spearman_manhattan | 0.4098 |
195
+ | pearson_euclidean | 0.4195 |
196
+ | spearman_euclidean | 0.4094 |
197
+ | pearson_dot | 0.2589 |
198
+ | spearman_dot | 0.2673 |
199
+ | pearson_max | 0.4198 |
200
+ | **spearman_max** | **0.4098** |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Hyperparameters
217
+ #### Non-Default Hyperparameters
218
+
219
+ - `overwrite_output_dir`: True
220
+ - `eval_strategy`: epoch
221
+ - `per_device_train_batch_size`: 128
222
+ - `per_device_eval_batch_size`: 128
223
+ - `learning_rate`: 1e-05
224
+ - `num_train_epochs`: 30
225
+ - `warmup_ratio`: 0.1
226
+ - `fp16`: True
227
+ - `load_best_model_at_end`: True
228
+ - `gradient_checkpointing`: True
229
+
230
+ #### All Hyperparameters
231
+ <details><summary>Click to expand</summary>
232
+
233
+ - `overwrite_output_dir`: True
234
+ - `do_predict`: False
235
+ - `eval_strategy`: epoch
236
+ - `prediction_loss_only`: True
237
+ - `per_device_train_batch_size`: 128
238
+ - `per_device_eval_batch_size`: 128
239
+ - `per_gpu_train_batch_size`: None
240
+ - `per_gpu_eval_batch_size`: None
241
+ - `gradient_accumulation_steps`: 1
242
+ - `eval_accumulation_steps`: None
243
+ - `learning_rate`: 1e-05
244
+ - `weight_decay`: 0.0
245
+ - `adam_beta1`: 0.9
246
+ - `adam_beta2`: 0.999
247
+ - `adam_epsilon`: 1e-08
248
+ - `max_grad_norm`: 1.0
249
+ - `num_train_epochs`: 30
250
+ - `max_steps`: -1
251
+ - `lr_scheduler_type`: linear
252
+ - `lr_scheduler_kwargs`: {}
253
+ - `warmup_ratio`: 0.1
254
+ - `warmup_steps`: 0
255
+ - `log_level`: passive
256
+ - `log_level_replica`: warning
257
+ - `log_on_each_node`: True
258
+ - `logging_nan_inf_filter`: True
259
+ - `save_safetensors`: True
260
+ - `save_on_each_node`: False
261
+ - `save_only_model`: False
262
+ - `restore_callback_states_from_checkpoint`: False
263
+ - `no_cuda`: False
264
+ - `use_cpu`: False
265
+ - `use_mps_device`: False
266
+ - `seed`: 42
267
+ - `data_seed`: None
268
+ - `jit_mode_eval`: False
269
+ - `use_ipex`: False
270
+ - `bf16`: False
271
+ - `fp16`: True
272
+ - `fp16_opt_level`: O1
273
+ - `half_precision_backend`: auto
274
+ - `bf16_full_eval`: False
275
+ - `fp16_full_eval`: False
276
+ - `tf32`: None
277
+ - `local_rank`: 0
278
+ - `ddp_backend`: None
279
+ - `tpu_num_cores`: None
280
+ - `tpu_metrics_debug`: False
281
+ - `debug`: []
282
+ - `dataloader_drop_last`: False
283
+ - `dataloader_num_workers`: 0
284
+ - `dataloader_prefetch_factor`: None
285
+ - `past_index`: -1
286
+ - `disable_tqdm`: False
287
+ - `remove_unused_columns`: True
288
+ - `label_names`: None
289
+ - `load_best_model_at_end`: True
290
+ - `ignore_data_skip`: False
291
+ - `fsdp`: []
292
+ - `fsdp_min_num_params`: 0
293
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
294
+ - `fsdp_transformer_layer_cls_to_wrap`: None
295
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
296
+ - `deepspeed`: None
297
+ - `label_smoothing_factor`: 0.0
298
+ - `optim`: adamw_torch
299
+ - `optim_args`: None
300
+ - `adafactor`: False
301
+ - `group_by_length`: False
302
+ - `length_column_name`: length
303
+ - `ddp_find_unused_parameters`: None
304
+ - `ddp_bucket_cap_mb`: None
305
+ - `ddp_broadcast_buffers`: False
306
+ - `dataloader_pin_memory`: True
307
+ - `dataloader_persistent_workers`: False
308
+ - `skip_memory_metrics`: True
309
+ - `use_legacy_prediction_loop`: False
310
+ - `push_to_hub`: False
311
+ - `resume_from_checkpoint`: None
312
+ - `hub_model_id`: None
313
+ - `hub_strategy`: every_save
314
+ - `hub_private_repo`: False
315
+ - `hub_always_push`: False
316
+ - `gradient_checkpointing`: True
317
+ - `gradient_checkpointing_kwargs`: None
318
+ - `include_inputs_for_metrics`: False
319
+ - `eval_do_concat_batches`: True
320
+ - `fp16_backend`: auto
321
+ - `push_to_hub_model_id`: None
322
+ - `push_to_hub_organization`: None
323
+ - `mp_parameters`:
324
+ - `auto_find_batch_size`: False
325
+ - `full_determinism`: False
326
+ - `torchdynamo`: None
327
+ - `ray_scope`: last
328
+ - `ddp_timeout`: 1800
329
+ - `torch_compile`: False
330
+ - `torch_compile_backend`: None
331
+ - `torch_compile_mode`: None
332
+ - `dispatch_batches`: None
333
+ - `split_batches`: None
334
+ - `include_tokens_per_second`: False
335
+ - `include_num_input_tokens_seen`: False
336
+ - `neftune_noise_alpha`: None
337
+ - `optim_target_modules`: None
338
+ - `batch_eval_metrics`: False
339
+ - `eval_on_start`: False
340
+ - `batch_sampler`: batch_sampler
341
+ - `multi_dataset_batch_sampler`: proportional
342
+
343
+ </details>
344
+
345
+ ### Training Logs
346
+ | Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
347
+ |:-------:|:-------:|:-------------:|:---------:|:--------------------------:|
348
+ | 0 | 0 | - | - | 0.8441 |
349
+ | 0.6605 | 500 | 0.023 | - | - |
350
+ | **1.0** | **757** | **-** | **0.013** | **0.7165** |
351
+ | 1.3210 | 1000 | 0.0058 | - | - |
352
+ | 1.9815 | 1500 | 0.0026 | - | - |
353
+ | 2.0 | 1514 | - | 0.0319 | 0.5737 |
354
+ | 2.6420 | 2000 | 0.0016 | - | - |
355
+ | 3.0 | 2271 | - | 0.0662 | 0.5100 |
356
+ | 3.3025 | 2500 | 0.0013 | - | - |
357
+ | 3.9630 | 3000 | 0.0011 | - | - |
358
+ | 4.0 | 3028 | - | 0.0962 | 0.4147 |
359
+ | 4.6235 | 3500 | 0.001 | - | - |
360
+ | 5.0 | 3785 | - | 0.0976 | 0.4098 |
361
+
362
+ * The bold row denotes the saved checkpoint.
363
+
364
+ ### Framework Versions
365
+ - Python: 3.10.12
366
+ - Sentence Transformers: 3.0.1
367
+ - Transformers: 4.42.4
368
+ - PyTorch: 2.3.1+cu121
369
+ - Accelerate: 0.33.0
370
+ - Datasets: 2.20.0
371
+ - Tokenizers: 0.19.1
372
+
373
+ ## Citation
374
+
375
+ ### BibTeX
376
+
377
+ #### Sentence Transformers
378
+ ```bibtex
379
+ @inproceedings{reimers-2019-sentence-bert,
380
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
381
+ author = "Reimers, Nils and Gurevych, Iryna",
382
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
383
+ month = "11",
384
+ year = "2019",
385
+ publisher = "Association for Computational Linguistics",
386
+ url = "https://arxiv.org/abs/1908.10084",
387
+ }
388
+ ```
389
+
390
+ <!--
391
+ ## Glossary
392
+
393
+ *Clearly define terms in order to be accessible across audiences.*
394
+ -->
395
+
396
+ <!--
397
+ ## Model Card Authors
398
+
399
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
400
+ -->
401
+
402
+ <!--
403
+ ## Model Card Contact
404
+
405
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
406
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<mask>": 64000
3
+ }
bpe.codes ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./final_output",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 258,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "PhobertTokenizer",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 64001
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c8c1fd26fd2a182094b328175a439588add868fecb653c3d13530f8f8ff052
3
+ size 540015464
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "64000": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "PhobertTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff