Paolo-Fraccaro
commited on
Commit
·
13d7913
1
Parent(s):
2e4b359
add inference script
Browse files- Prithvi_run_inference.py +339 -0
Prithvi_run_inference.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import rasterio
|
8 |
+
import torch
|
9 |
+
import yaml
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from Prithvi import MaskedAutoencoderViT
|
13 |
+
|
14 |
+
|
15 |
+
NO_DATA = -9999
|
16 |
+
NO_DATA_FLOAT = 0.0001
|
17 |
+
PERCENTILES = (0.1, 99.9)
|
18 |
+
|
19 |
+
|
20 |
+
def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
|
21 |
+
""" Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
22 |
+
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
23 |
+
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
24 |
+
Args:
|
25 |
+
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
26 |
+
new_img: torch.Tensor representing image with shape = (bands, H, W).
|
27 |
+
channels: list of indices representing RGB channels.
|
28 |
+
data_mean: list of mean values for each band.
|
29 |
+
data_std: list of std values for each band.
|
30 |
+
Returns:
|
31 |
+
torch.Tensor with shape (num_channels, height, width) for original image
|
32 |
+
torch.Tensor with shape (num_channels, height, width) for the other image
|
33 |
+
"""
|
34 |
+
|
35 |
+
stack_c = [], []
|
36 |
+
|
37 |
+
for c in channels:
|
38 |
+
orig_ch = orig_img[c, ...]
|
39 |
+
valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
|
40 |
+
valid_mask[orig_ch == 0.0001] = False
|
41 |
+
|
42 |
+
# Back to original data range
|
43 |
+
orig_ch = (orig_ch * data_std[c]) + data_mean[c]
|
44 |
+
new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]
|
45 |
+
|
46 |
+
# Rescale (enhancing contrast)
|
47 |
+
min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)
|
48 |
+
|
49 |
+
orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
|
50 |
+
new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)
|
51 |
+
|
52 |
+
# No data as zeros
|
53 |
+
orig_ch[~valid_mask] = 0
|
54 |
+
new_ch[~valid_mask] = 0
|
55 |
+
|
56 |
+
stack_c[0].append(orig_ch)
|
57 |
+
stack_c[1].append(new_ch)
|
58 |
+
|
59 |
+
# Channels first
|
60 |
+
stack_orig = torch.stack(stack_c[0], dim=0)
|
61 |
+
stack_rec = torch.stack(stack_c[1], dim=0)
|
62 |
+
|
63 |
+
return stack_orig, stack_rec
|
64 |
+
|
65 |
+
|
66 |
+
def read_geotiff(file_path: str):
|
67 |
+
""" Read all bands from *file_path* and returns image + meta info.
|
68 |
+
Args:
|
69 |
+
file_path: path to image file.
|
70 |
+
Returns:
|
71 |
+
np.ndarray with shape (bands, height, width)
|
72 |
+
meta info dict
|
73 |
+
"""
|
74 |
+
|
75 |
+
with rasterio.open(file_path) as src:
|
76 |
+
img = src.read()
|
77 |
+
meta = src.meta
|
78 |
+
|
79 |
+
return img, meta
|
80 |
+
|
81 |
+
|
82 |
+
def save_geotiff(image, output_path: str, meta: dict):
|
83 |
+
""" Save multi-band image in Geotiff file.
|
84 |
+
Args:
|
85 |
+
image: np.ndarray with shape (bands, height, width)
|
86 |
+
output_path: path where to save the image
|
87 |
+
meta: dict with meta info.
|
88 |
+
"""
|
89 |
+
|
90 |
+
with rasterio.open(output_path, "w", **meta) as dest:
|
91 |
+
for i in range(image.shape[0]):
|
92 |
+
dest.write(image[i, :, :], i + 1)
|
93 |
+
|
94 |
+
return
|
95 |
+
|
96 |
+
|
97 |
+
def _convert_np_uint8(float_image: torch.Tensor):
|
98 |
+
|
99 |
+
image = float_image.numpy() * 255.0
|
100 |
+
image = image.astype(dtype=np.uint8)
|
101 |
+
|
102 |
+
return image
|
103 |
+
|
104 |
+
|
105 |
+
def load_example(file_paths: List[str], mean: List[float], std: List[float]):
|
106 |
+
""" Build an input example by loading images in *file_paths*.
|
107 |
+
Args:
|
108 |
+
file_paths: list of file paths .
|
109 |
+
mean: list containing mean values for each band in the images in *file_paths*.
|
110 |
+
std: list containing std values for each band in the images in *file_paths*.
|
111 |
+
Returns:
|
112 |
+
np.array containing created example
|
113 |
+
list of meta info for each image in *file_paths*
|
114 |
+
"""
|
115 |
+
|
116 |
+
imgs = []
|
117 |
+
metas = []
|
118 |
+
|
119 |
+
for file in file_paths:
|
120 |
+
img, meta = read_geotiff(file)
|
121 |
+
|
122 |
+
# Rescaling (don't normalize on nodata)
|
123 |
+
img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
124 |
+
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
125 |
+
|
126 |
+
imgs.append(img)
|
127 |
+
metas.append(meta)
|
128 |
+
|
129 |
+
imgs = np.stack(imgs, axis=0) # num_frames, img_size, img_size, C
|
130 |
+
imgs = np.moveaxis(imgs, -1, 0).astype('float32') # C, num_frames, img_size, img_size
|
131 |
+
imgs = np.expand_dims(imgs, axis=0) # add batch dim
|
132 |
+
|
133 |
+
return imgs, metas
|
134 |
+
|
135 |
+
|
136 |
+
def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
|
137 |
+
""" Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
138 |
+
Args:
|
139 |
+
model: MAE model to run.
|
140 |
+
input_data: torch.Tensor with shape (B, C, T, H, W).
|
141 |
+
mask_ratio: mask ratio to use.
|
142 |
+
device: device where model should run.
|
143 |
+
Returns:
|
144 |
+
3 torch.Tensor with shape (B, C, T, H, W).
|
145 |
+
"""
|
146 |
+
|
147 |
+
with torch.no_grad():
|
148 |
+
x = input_data.to(device)
|
149 |
+
|
150 |
+
_, pred, mask = model(x, mask_ratio)
|
151 |
+
|
152 |
+
# Create mask and prediction images (un-patchify)
|
153 |
+
mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
154 |
+
pred_img = model.unpatchify(pred).detach().cpu()
|
155 |
+
|
156 |
+
# Mix visible and predicted patches
|
157 |
+
rec_img = input_data.clone()
|
158 |
+
rec_img[mask_img == 1] = pred_img[mask_img == 1] # binary mask: 0 is keep, 1 is remove
|
159 |
+
|
160 |
+
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
161 |
+
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
162 |
+
|
163 |
+
return rec_img, mask_img
|
164 |
+
|
165 |
+
|
166 |
+
def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
|
167 |
+
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
168 |
+
Args:
|
169 |
+
input_img: input torch.Tensor with shape (C, T, H, W).
|
170 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
171 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
172 |
+
channels: list of indices representing RGB channels.
|
173 |
+
mean: list of mean values for each band.
|
174 |
+
std: list of std values for each band.
|
175 |
+
output_dir: directory where to save outputs.
|
176 |
+
meta_data: list of dicts with geotiff meta info.
|
177 |
+
"""
|
178 |
+
|
179 |
+
for t in range(input_img.shape[1]):
|
180 |
+
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
181 |
+
new_img=rec_img[:, t, :, :],
|
182 |
+
channels=channels, data_mean=mean,
|
183 |
+
data_std=std)
|
184 |
+
|
185 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
186 |
+
|
187 |
+
# Saving images
|
188 |
+
|
189 |
+
save_geotiff(image=_convert_np_uint8(rgb_orig),
|
190 |
+
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
191 |
+
meta=meta_data[t])
|
192 |
+
|
193 |
+
save_geotiff(image=_convert_np_uint8(rgb_pred),
|
194 |
+
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
195 |
+
meta=meta_data[t])
|
196 |
+
|
197 |
+
save_geotiff(image=_convert_np_uint8(rgb_mask),
|
198 |
+
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
199 |
+
meta=meta_data[t])
|
200 |
+
|
201 |
+
|
202 |
+
def main(data_files: List[str], yaml_file_path: str, checkpoint: str, output_dir: str, mask_ratio: float):
|
203 |
+
|
204 |
+
os.makedirs(output_dir, exist_ok=True)
|
205 |
+
|
206 |
+
# Get parameters --------
|
207 |
+
|
208 |
+
with open(yaml_file_path, 'r') as f:
|
209 |
+
params = yaml.safe_load(f)
|
210 |
+
|
211 |
+
# data related
|
212 |
+
num_frames = params['num_frames']
|
213 |
+
img_size = params['img_size']
|
214 |
+
bands = params['bands']
|
215 |
+
mean = params['data_mean']
|
216 |
+
std = params['data_std']
|
217 |
+
|
218 |
+
# model related
|
219 |
+
depth = params['depth']
|
220 |
+
patch_size = params['patch_size']
|
221 |
+
embed_dim = params['embed_dim']
|
222 |
+
num_heads = params['num_heads']
|
223 |
+
tubelet_size = params['tubelet_size']
|
224 |
+
decoder_embed_dim = params['decoder_embed_dim']
|
225 |
+
decoder_num_heads = params['decoder_num_heads']
|
226 |
+
decoder_depth = params['decoder_depth']
|
227 |
+
|
228 |
+
batch_size = params['batch_size']
|
229 |
+
|
230 |
+
mask_ratio = params['mask_ratio'] if mask_ratio is None else mask_ratio
|
231 |
+
|
232 |
+
# We must have *num_frames* files to build one example!
|
233 |
+
assert len(data_files) == num_frames, "File list must be equal to expected number of frames."
|
234 |
+
|
235 |
+
if torch.cuda.is_available():
|
236 |
+
device = torch.device('cuda')
|
237 |
+
else:
|
238 |
+
device = torch.device('cpu')
|
239 |
+
|
240 |
+
print(f"Using {device} device.\n")
|
241 |
+
|
242 |
+
# Loading data ---------------------------------------------------------------------------------
|
243 |
+
|
244 |
+
input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std)
|
245 |
+
|
246 |
+
# Create model and load checkpoint -------------------------------------------------------------
|
247 |
+
|
248 |
+
model = MaskedAutoencoderViT(
|
249 |
+
img_size=img_size,
|
250 |
+
patch_size=patch_size,
|
251 |
+
num_frames=num_frames,
|
252 |
+
tubelet_size=tubelet_size,
|
253 |
+
in_chans=len(bands),
|
254 |
+
embed_dim=embed_dim,
|
255 |
+
depth=depth,
|
256 |
+
num_heads=num_heads,
|
257 |
+
decoder_embed_dim=decoder_embed_dim,
|
258 |
+
decoder_depth=decoder_depth,
|
259 |
+
decoder_num_heads=decoder_num_heads,
|
260 |
+
mlp_ratio=4.,
|
261 |
+
norm_layer=functools.partial(torch.nn.LayerNorm, eps=1e-6),
|
262 |
+
norm_pix_loss=False)
|
263 |
+
|
264 |
+
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
265 |
+
print(f"\n--> model has {total_params / 1e6} Million params.\n")
|
266 |
+
|
267 |
+
model.to(device)
|
268 |
+
|
269 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
270 |
+
model.load_state_dict(state_dict)
|
271 |
+
print(f"Loaded checkpoint from {checkpoint}")
|
272 |
+
|
273 |
+
# Running model --------------------------------------------------------------------------------
|
274 |
+
|
275 |
+
model.eval()
|
276 |
+
channels = [bands.index(b) for b in ['B04', 'B03', 'B02']] # BGR -> RGB
|
277 |
+
|
278 |
+
# Build sliding window
|
279 |
+
batch = torch.tensor(input_data, device='cpu')
|
280 |
+
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
|
281 |
+
h1, w1 = windows.shape[3:5]
|
282 |
+
windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size)
|
283 |
+
|
284 |
+
# Split into batches if number of windows > batch_size
|
285 |
+
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
|
286 |
+
windows = torch.tensor_split(windows, num_batches, dim=0)
|
287 |
+
|
288 |
+
# Run model
|
289 |
+
rec_imgs = []
|
290 |
+
mask_imgs = []
|
291 |
+
for x in windows:
|
292 |
+
rec_img, mask_img = run_model(model, x, mask_ratio, device)
|
293 |
+
rec_imgs.append(rec_img)
|
294 |
+
mask_imgs.append(mask_img)
|
295 |
+
|
296 |
+
rec_imgs = torch.concat(rec_imgs, dim=0)
|
297 |
+
mask_imgs = torch.concat(mask_imgs, dim=0)
|
298 |
+
|
299 |
+
# Build images from patches
|
300 |
+
rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
|
301 |
+
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
|
302 |
+
mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
|
303 |
+
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
|
304 |
+
|
305 |
+
# Mix original image with patches
|
306 |
+
h, w = rec_imgs.shape[-2:]
|
307 |
+
rec_imgs_full = batch.clone()
|
308 |
+
rec_imgs_full[..., :h, :w] = rec_imgs
|
309 |
+
|
310 |
+
mask_imgs_full = torch.ones_like(batch)
|
311 |
+
mask_imgs_full[..., :h, :w] = mask_imgs
|
312 |
+
|
313 |
+
# Build RGB images
|
314 |
+
for d in meta_data:
|
315 |
+
d.update(count=3, dtype='uint8', compress='lzw', nodata=0)
|
316 |
+
|
317 |
+
save_rgb_imgs(batch[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
318 |
+
channels, mean, std, output_dir, meta_data)
|
319 |
+
|
320 |
+
print("Done!")
|
321 |
+
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
parser = argparse.ArgumentParser('MAE run inference', add_help=False)
|
325 |
+
|
326 |
+
parser.add_argument('--data_files', required=True, type=str, nargs='+',
|
327 |
+
help='Path to the data files. Assumes multi-band files.')
|
328 |
+
parser.add_argument('--yaml_file_path', type=str, required=True,
|
329 |
+
help='Path to yaml file containing model training parameters.')
|
330 |
+
parser.add_argument('--checkpoint', required=True, type=str,
|
331 |
+
help='Path to a checkpoint file to load from.')
|
332 |
+
parser.add_argument('--output_dir', required=True, type=str,
|
333 |
+
help='Path to the directory where to save outputs.')
|
334 |
+
parser.add_argument('--mask_ratio', default=None, type=float,
|
335 |
+
help='Masking ratio (percentage of removed patches). '
|
336 |
+
'If None (default) use same value used for pretraining.')
|
337 |
+
args = parser.parse_args()
|
338 |
+
|
339 |
+
main(**vars(args))
|