Add evaluate method and option to save for each epoch in finetune (#7)
Browse files- Added evaluate method and option to save for each epoch in finetune (60b6403196d6cb947c41fbeddcc7202dc7aa81a2)
Co-authored-by: Victor Yukio Shirasuna <[email protected]>
smi-ted/finetune/args.py
CHANGED
@@ -305,6 +305,7 @@ def get_parser(parser=None):
|
|
305 |
parser.add_argument("--model_path", type=str, default="./smi_ted/")
|
306 |
parser.add_argument("--ckpt_filename", type=str, default="smi_ted_Light_40.pt")
|
307 |
# parser.add_argument('--n_output', type=int, default=1)
|
|
|
308 |
parser.add_argument("--save_ckpt", type=int, default=1)
|
309 |
parser.add_argument("--start_seed", type=int, default=0)
|
310 |
parser.add_argument("--smi_ted_version", type=str, default="v1")
|
|
|
305 |
parser.add_argument("--model_path", type=str, default="./smi_ted/")
|
306 |
parser.add_argument("--ckpt_filename", type=str, default="smi_ted_Light_40.pt")
|
307 |
# parser.add_argument('--n_output', type=int, default=1)
|
308 |
+
parser.add_argument("--save_every_epoch", type=int, default=0)
|
309 |
parser.add_argument("--save_ckpt", type=int, default=1)
|
310 |
parser.add_argument("--start_seed", type=int, default=0)
|
311 |
parser.add_argument("--smi_ted_version", type=str, default="v1")
|
smi-ted/finetune/finetune_classification.py
CHANGED
@@ -48,6 +48,7 @@ def main(config):
|
|
48 |
seed=config.start_seed,
|
49 |
checkpoints_folder=config.checkpoints_folder,
|
50 |
device=device,
|
|
|
51 |
save_ckpt=bool(config.save_ckpt)
|
52 |
)
|
53 |
trainer.compile(
|
@@ -56,6 +57,7 @@ def main(config):
|
|
56 |
loss_fn=loss_function
|
57 |
)
|
58 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
59 |
|
60 |
|
61 |
if __name__ == '__main__':
|
|
|
48 |
seed=config.start_seed,
|
49 |
checkpoints_folder=config.checkpoints_folder,
|
50 |
device=device,
|
51 |
+
save_every_epoch=bool(config.save_every_epoch),
|
52 |
save_ckpt=bool(config.save_ckpt)
|
53 |
)
|
54 |
trainer.compile(
|
|
|
57 |
loss_fn=loss_function
|
58 |
)
|
59 |
trainer.fit(max_epochs=config.max_epochs)
|
60 |
+
trainer.evaluate()
|
61 |
|
62 |
|
63 |
if __name__ == '__main__':
|
smi-ted/finetune/finetune_classification_multitask.py
CHANGED
@@ -80,6 +80,7 @@ def main(config):
|
|
80 |
seed=config.start_seed,
|
81 |
checkpoints_folder=config.checkpoints_folder,
|
82 |
device=device,
|
|
|
83 |
save_ckpt=bool(config.save_ckpt)
|
84 |
)
|
85 |
trainer.compile(
|
@@ -88,6 +89,7 @@ def main(config):
|
|
88 |
loss_fn=loss_function
|
89 |
)
|
90 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
91 |
|
92 |
|
93 |
if __name__ == '__main__':
|
|
|
80 |
seed=config.start_seed,
|
81 |
checkpoints_folder=config.checkpoints_folder,
|
82 |
device=device,
|
83 |
+
save_every_epoch=bool(config.save_every_epoch),
|
84 |
save_ckpt=bool(config.save_ckpt)
|
85 |
)
|
86 |
trainer.compile(
|
|
|
89 |
loss_fn=loss_function
|
90 |
)
|
91 |
trainer.fit(max_epochs=config.max_epochs)
|
92 |
+
trainer.evaluate()
|
93 |
|
94 |
|
95 |
if __name__ == '__main__':
|
smi-ted/finetune/finetune_regression.py
CHANGED
@@ -50,6 +50,7 @@ def main(config):
|
|
50 |
seed=config.start_seed,
|
51 |
checkpoints_folder=config.checkpoints_folder,
|
52 |
device=device,
|
|
|
53 |
save_ckpt=bool(config.save_ckpt)
|
54 |
)
|
55 |
trainer.compile(
|
@@ -58,6 +59,7 @@ def main(config):
|
|
58 |
loss_fn=loss_function
|
59 |
)
|
60 |
trainer.fit(max_epochs=config.max_epochs)
|
|
|
61 |
|
62 |
|
63 |
if __name__ == '__main__':
|
|
|
50 |
seed=config.start_seed,
|
51 |
checkpoints_folder=config.checkpoints_folder,
|
52 |
device=device,
|
53 |
+
save_every_epoch=bool(config.save_every_epoch),
|
54 |
save_ckpt=bool(config.save_ckpt)
|
55 |
)
|
56 |
trainer.compile(
|
|
|
59 |
loss_fn=loss_function
|
60 |
)
|
61 |
trainer.fit(max_epochs=config.max_epochs)
|
62 |
+
trainer.evaluate()
|
63 |
|
64 |
|
65 |
if __name__ == '__main__':
|
smi-ted/finetune/trainers.py
CHANGED
@@ -25,7 +25,7 @@ from utils import RMSE, sensitivity, specificity
|
|
25 |
class Trainer:
|
26 |
|
27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
28 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
29 |
# data
|
30 |
self.df_train = raw_data[0]
|
31 |
self.df_valid = raw_data[1]
|
@@ -40,6 +40,7 @@ class Trainer:
|
|
40 |
self.target_metric = target_metric
|
41 |
self.seed = seed
|
42 |
self.checkpoints_folder = checkpoints_folder
|
|
|
43 |
self.save_ckpt = save_ckpt
|
44 |
self.device = device
|
45 |
self._set_seed(seed)
|
@@ -81,8 +82,7 @@ class Trainer:
|
|
81 |
self._print_configuration()
|
82 |
|
83 |
def fit(self, max_epochs=500):
|
84 |
-
best_vloss =
|
85 |
-
best_vmetric = -1
|
86 |
|
87 |
for epoch in range(1, max_epochs+1):
|
88 |
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
|
@@ -91,47 +91,47 @@ class Trainer:
|
|
91 |
self.model.to(self.device)
|
92 |
self.model.train()
|
93 |
train_loss = self._train_one_epoch()
|
94 |
-
print(f'Training loss: {round(train_loss, 6)}')
|
95 |
|
96 |
-
#
|
97 |
self.model.eval()
|
98 |
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
|
99 |
-
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
|
100 |
-
|
101 |
-
print(f"Valid loss: {round(val_loss, 6)}")
|
102 |
for m in val_metrics.keys():
|
103 |
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
|
104 |
-
print("-"*32)
|
105 |
-
print(f"Test loss: {round(tst_loss, 6)}")
|
106 |
-
for m in tst_metrics.keys():
|
107 |
-
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
108 |
|
109 |
############################### Save Finetune checkpoint #######################################
|
110 |
-
if (val_loss < best_vloss) and self.save_ckpt:
|
111 |
# remove old checkpoint
|
112 |
-
if
|
113 |
-
os.remove(os.path.join(self.checkpoints_folder,
|
114 |
|
115 |
# filename
|
116 |
model_name = f'{str(self.model)}-Finetune'
|
117 |
-
|
118 |
-
filename = f"{model_name}_epoch={epoch}_{self.dataset_name}_seed{self.seed}_{self.target_metric}={metric}.pt"
|
119 |
|
120 |
# save checkpoint
|
121 |
print('Saving checkpoint...')
|
122 |
-
self._save_checkpoint(epoch,
|
123 |
-
|
124 |
-
# save predictions
|
125 |
-
pd.DataFrame(tst_preds).to_csv(
|
126 |
-
os.path.join(
|
127 |
-
self.checkpoints_folder,
|
128 |
-
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
129 |
-
index=False
|
130 |
-
)
|
131 |
|
132 |
# update best loss
|
133 |
best_vloss = val_loss
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def _train_one_epoch(self):
|
137 |
raise NotImplementedError
|
@@ -153,6 +153,11 @@ class Trainer:
|
|
153 |
print('Valid size:\t', self.df_valid.shape[0])
|
154 |
print('Test size:\t', self.df_test.shape[0])
|
155 |
|
|
|
|
|
|
|
|
|
|
|
156 |
def _save_checkpoint(self, current_epoch, filename):
|
157 |
if not os.path.exists(self.checkpoints_folder):
|
158 |
os.makedirs(self.checkpoints_folder)
|
@@ -198,14 +203,14 @@ class Trainer:
|
|
198 |
class TrainerRegressor(Trainer):
|
199 |
|
200 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
201 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
202 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
203 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
204 |
|
205 |
def _train_one_epoch(self):
|
206 |
running_loss = 0.0
|
207 |
|
208 |
-
for data in tqdm(self.train_loader):
|
209 |
# Every data instance is an input + label pair
|
210 |
smiles, targets = data
|
211 |
targets = targets.clone().detach().to(self.device)
|
@@ -227,6 +232,11 @@ class TrainerRegressor(Trainer):
|
|
227 |
# print statistics
|
228 |
running_loss += loss.item()
|
229 |
|
|
|
|
|
|
|
|
|
|
|
230 |
return running_loss / len(self.train_loader)
|
231 |
|
232 |
def _validate_one_epoch(self, data_loader):
|
@@ -235,7 +245,7 @@ class TrainerRegressor(Trainer):
|
|
235 |
running_loss = 0.0
|
236 |
|
237 |
with torch.no_grad():
|
238 |
-
for data in tqdm(data_loader):
|
239 |
# Every data instance is an input + label pair
|
240 |
smiles, targets = data
|
241 |
targets = targets.clone().detach().to(self.device)
|
@@ -253,6 +263,11 @@ class TrainerRegressor(Trainer):
|
|
253 |
# print statistics
|
254 |
running_loss += loss.item()
|
255 |
|
|
|
|
|
|
|
|
|
|
|
256 |
# Put together predictions and labels from batches
|
257 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
258 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
@@ -271,20 +286,20 @@ class TrainerRegressor(Trainer):
|
|
271 |
'spearman': spearman,
|
272 |
}
|
273 |
|
274 |
-
return preds, running_loss / len(
|
275 |
|
276 |
|
277 |
class TrainerClassifier(Trainer):
|
278 |
|
279 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
280 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
281 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
282 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
283 |
|
284 |
def _train_one_epoch(self):
|
285 |
running_loss = 0.0
|
286 |
|
287 |
-
for data in tqdm(self.train_loader):
|
288 |
# Every data instance is an input + label pair
|
289 |
smiles, targets = data
|
290 |
targets = targets.clone().detach().to(self.device)
|
@@ -306,6 +321,11 @@ class TrainerClassifier(Trainer):
|
|
306 |
# print statistics
|
307 |
running_loss += loss.item()
|
308 |
|
|
|
|
|
|
|
|
|
|
|
309 |
return running_loss / len(self.train_loader)
|
310 |
|
311 |
def _validate_one_epoch(self, data_loader):
|
@@ -314,7 +334,7 @@ class TrainerClassifier(Trainer):
|
|
314 |
running_loss = 0.0
|
315 |
|
316 |
with torch.no_grad():
|
317 |
-
for data in tqdm(data_loader):
|
318 |
# Every data instance is an input + label pair
|
319 |
smiles, targets = data
|
320 |
targets = targets.clone().detach().to(self.device)
|
@@ -332,6 +352,11 @@ class TrainerClassifier(Trainer):
|
|
332 |
# print statistics
|
333 |
running_loss += loss.item()
|
334 |
|
|
|
|
|
|
|
|
|
|
|
335 |
# Put together predictions and labels from batches
|
336 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
337 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
@@ -366,15 +391,15 @@ class TrainerClassifier(Trainer):
|
|
366 |
'specificity': sp,
|
367 |
}
|
368 |
|
369 |
-
return preds, running_loss / len(
|
370 |
|
371 |
|
372 |
class TrainerClassifierMultitask(Trainer):
|
373 |
|
374 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
375 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
|
376 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
377 |
-
target_metric, seed, checkpoints_folder, save_ckpt, device)
|
378 |
|
379 |
def _prepare_data(self):
|
380 |
# normalize dataset
|
@@ -409,7 +434,7 @@ class TrainerClassifierMultitask(Trainer):
|
|
409 |
def _train_one_epoch(self):
|
410 |
running_loss = 0.0
|
411 |
|
412 |
-
for data in tqdm(self.train_loader):
|
413 |
# Every data instance is an input + label pair + mask
|
414 |
smiles, targets, target_masks = data
|
415 |
targets = targets.clone().detach().to(self.device)
|
@@ -432,6 +457,11 @@ class TrainerClassifierMultitask(Trainer):
|
|
432 |
# print statistics
|
433 |
running_loss += loss.item()
|
434 |
|
|
|
|
|
|
|
|
|
|
|
435 |
return running_loss / len(self.train_loader)
|
436 |
|
437 |
def _validate_one_epoch(self, data_loader):
|
@@ -441,7 +471,7 @@ class TrainerClassifierMultitask(Trainer):
|
|
441 |
running_loss = 0.0
|
442 |
|
443 |
with torch.no_grad():
|
444 |
-
for data in tqdm(data_loader):
|
445 |
# Every data instance is an input + label pair + mask
|
446 |
smiles, targets, target_masks = data
|
447 |
targets = targets.clone().detach().to(self.device)
|
@@ -461,6 +491,11 @@ class TrainerClassifierMultitask(Trainer):
|
|
461 |
# print statistics
|
462 |
running_loss += loss.item()
|
463 |
|
|
|
|
|
|
|
|
|
|
|
464 |
# Put together predictions and labels from batches
|
465 |
preds = torch.cat(data_preds, dim=0)
|
466 |
tgts = torch.cat(data_targets, dim=0)
|
@@ -513,4 +548,4 @@ class TrainerClassifierMultitask(Trainer):
|
|
513 |
'specificity': average_sp.item(),
|
514 |
}
|
515 |
|
516 |
-
return preds, running_loss / len(
|
|
|
25 |
class Trainer:
|
26 |
|
27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
28 |
+
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
29 |
# data
|
30 |
self.df_train = raw_data[0]
|
31 |
self.df_valid = raw_data[1]
|
|
|
40 |
self.target_metric = target_metric
|
41 |
self.seed = seed
|
42 |
self.checkpoints_folder = checkpoints_folder
|
43 |
+
self.save_every_epoch = save_every_epoch
|
44 |
self.save_ckpt = save_ckpt
|
45 |
self.device = device
|
46 |
self._set_seed(seed)
|
|
|
82 |
self._print_configuration()
|
83 |
|
84 |
def fit(self, max_epochs=500):
|
85 |
+
best_vloss = float('inf')
|
|
|
86 |
|
87 |
for epoch in range(1, max_epochs+1):
|
88 |
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
|
|
|
91 |
self.model.to(self.device)
|
92 |
self.model.train()
|
93 |
train_loss = self._train_one_epoch()
|
|
|
94 |
|
95 |
+
# validation
|
96 |
self.model.eval()
|
97 |
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
|
|
|
|
|
|
|
98 |
for m in val_metrics.keys():
|
99 |
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
|
|
|
|
|
|
|
|
|
100 |
|
101 |
############################### Save Finetune checkpoint #######################################
|
102 |
+
if ((val_loss < best_vloss) or self.save_every_epoch) and self.save_ckpt:
|
103 |
# remove old checkpoint
|
104 |
+
if best_vloss != float('inf') and not self.save_every_epoch:
|
105 |
+
os.remove(os.path.join(self.checkpoints_folder, self.last_filename))
|
106 |
|
107 |
# filename
|
108 |
model_name = f'{str(self.model)}-Finetune'
|
109 |
+
self.last_filename = f"{model_name}_epoch={epoch}_{self.dataset_name}_seed{self.seed}_valloss={round(val_loss, 4)}.pt"
|
|
|
110 |
|
111 |
# save checkpoint
|
112 |
print('Saving checkpoint...')
|
113 |
+
self._save_checkpoint(epoch, self.last_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# update best loss
|
116 |
best_vloss = val_loss
|
117 |
+
|
118 |
+
def evaluate(self):
|
119 |
+
print("\n=====Test Evaluation=====")
|
120 |
+
self._load_checkpoint(self.last_filename)
|
121 |
+
self.model.eval()
|
122 |
+
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
|
123 |
+
|
124 |
+
# show metrics
|
125 |
+
for m in tst_metrics.keys():
|
126 |
+
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
127 |
+
|
128 |
+
# save predictions
|
129 |
+
pd.DataFrame(tst_preds).to_csv(
|
130 |
+
os.path.join(
|
131 |
+
self.checkpoints_folder,
|
132 |
+
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
133 |
+
index=False
|
134 |
+
)
|
135 |
|
136 |
def _train_one_epoch(self):
|
137 |
raise NotImplementedError
|
|
|
153 |
print('Valid size:\t', self.df_valid.shape[0])
|
154 |
print('Test size:\t', self.df_test.shape[0])
|
155 |
|
156 |
+
def _load_checkpoint(self, filename):
|
157 |
+
ckpt_path = os.path.join(self.checkpoints_folder, filename)
|
158 |
+
ckpt_dict = torch.load(ckpt_path, map_location='cpu')
|
159 |
+
self.model.load_state_dict(ckpt_dict['MODEL_STATE'])
|
160 |
+
|
161 |
def _save_checkpoint(self, current_epoch, filename):
|
162 |
if not os.path.exists(self.checkpoints_folder):
|
163 |
os.makedirs(self.checkpoints_folder)
|
|
|
203 |
class TrainerRegressor(Trainer):
|
204 |
|
205 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
206 |
+
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
207 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
208 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
209 |
|
210 |
def _train_one_epoch(self):
|
211 |
running_loss = 0.0
|
212 |
|
213 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
214 |
# Every data instance is an input + label pair
|
215 |
smiles, targets = data
|
216 |
targets = targets.clone().detach().to(self.device)
|
|
|
232 |
# print statistics
|
233 |
running_loss += loss.item()
|
234 |
|
235 |
+
# progress bar
|
236 |
+
pbar.set_description('[TRAINING]')
|
237 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
238 |
+
pbar.refresh()
|
239 |
+
|
240 |
return running_loss / len(self.train_loader)
|
241 |
|
242 |
def _validate_one_epoch(self, data_loader):
|
|
|
245 |
running_loss = 0.0
|
246 |
|
247 |
with torch.no_grad():
|
248 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
249 |
# Every data instance is an input + label pair
|
250 |
smiles, targets = data
|
251 |
targets = targets.clone().detach().to(self.device)
|
|
|
263 |
# print statistics
|
264 |
running_loss += loss.item()
|
265 |
|
266 |
+
# progress bar
|
267 |
+
pbar.set_description('[EVALUATION]')
|
268 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
269 |
+
pbar.refresh()
|
270 |
+
|
271 |
# Put together predictions and labels from batches
|
272 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
273 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
|
286 |
'spearman': spearman,
|
287 |
}
|
288 |
|
289 |
+
return preds, running_loss / len(data_loader), metrics
|
290 |
|
291 |
|
292 |
class TrainerClassifier(Trainer):
|
293 |
|
294 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
295 |
+
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
296 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
297 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
298 |
|
299 |
def _train_one_epoch(self):
|
300 |
running_loss = 0.0
|
301 |
|
302 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
303 |
# Every data instance is an input + label pair
|
304 |
smiles, targets = data
|
305 |
targets = targets.clone().detach().to(self.device)
|
|
|
321 |
# print statistics
|
322 |
running_loss += loss.item()
|
323 |
|
324 |
+
# progress bar
|
325 |
+
pbar.set_description('[TRAINING]')
|
326 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
327 |
+
pbar.refresh()
|
328 |
+
|
329 |
return running_loss / len(self.train_loader)
|
330 |
|
331 |
def _validate_one_epoch(self, data_loader):
|
|
|
334 |
running_loss = 0.0
|
335 |
|
336 |
with torch.no_grad():
|
337 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
338 |
# Every data instance is an input + label pair
|
339 |
smiles, targets = data
|
340 |
targets = targets.clone().detach().to(self.device)
|
|
|
352 |
# print statistics
|
353 |
running_loss += loss.item()
|
354 |
|
355 |
+
# progress bar
|
356 |
+
pbar.set_description('[EVALUATION]')
|
357 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
358 |
+
pbar.refresh()
|
359 |
+
|
360 |
# Put together predictions and labels from batches
|
361 |
preds = torch.cat(data_preds, dim=0).cpu().numpy()
|
362 |
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
|
|
|
391 |
'specificity': sp,
|
392 |
}
|
393 |
|
394 |
+
return preds, running_loss / len(data_loader), metrics
|
395 |
|
396 |
|
397 |
class TrainerClassifierMultitask(Trainer):
|
398 |
|
399 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
400 |
+
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
401 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
402 |
+
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
403 |
|
404 |
def _prepare_data(self):
|
405 |
# normalize dataset
|
|
|
434 |
def _train_one_epoch(self):
|
435 |
running_loss = 0.0
|
436 |
|
437 |
+
for idx, data in enumerate(pbar := tqdm(self.train_loader)):
|
438 |
# Every data instance is an input + label pair + mask
|
439 |
smiles, targets, target_masks = data
|
440 |
targets = targets.clone().detach().to(self.device)
|
|
|
457 |
# print statistics
|
458 |
running_loss += loss.item()
|
459 |
|
460 |
+
# progress bar
|
461 |
+
pbar.set_description('[TRAINING]')
|
462 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
463 |
+
pbar.refresh()
|
464 |
+
|
465 |
return running_loss / len(self.train_loader)
|
466 |
|
467 |
def _validate_one_epoch(self, data_loader):
|
|
|
471 |
running_loss = 0.0
|
472 |
|
473 |
with torch.no_grad():
|
474 |
+
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
475 |
# Every data instance is an input + label pair + mask
|
476 |
smiles, targets, target_masks = data
|
477 |
targets = targets.clone().detach().to(self.device)
|
|
|
491 |
# print statistics
|
492 |
running_loss += loss.item()
|
493 |
|
494 |
+
# progress bar
|
495 |
+
pbar.set_description('[EVALUATION]')
|
496 |
+
pbar.set_postfix(loss=running_loss/(idx+1))
|
497 |
+
pbar.refresh()
|
498 |
+
|
499 |
# Put together predictions and labels from batches
|
500 |
preds = torch.cat(data_preds, dim=0)
|
501 |
tgts = torch.cat(data_targets, dim=0)
|
|
|
548 |
'specificity': average_sp.item(),
|
549 |
}
|
550 |
|
551 |
+
return preds, running_loss / len(data_loader), metrics
|