wshuai190 commited on
Commit
be26cd5
·
verified ·
1 Parent(s): 9102a31

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - pearson_cosine
10
+ - spearman_cosine
11
+ - pearson_manhattan
12
+ - spearman_manhattan
13
+ - pearson_euclidean
14
+ - spearman_euclidean
15
+ - pearson_dot
16
+ - spearman_dot
17
+ - pearson_max
18
+ - spearman_max
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - dataset_size:557850
26
+ - loss:StarbucksLoss
27
+ widget:
28
+ - source_sentence: A dog is in the water.
29
+ sentences:
30
+ - The woman is wearing green.
31
+ - The dog is rolling around in the grass.
32
+ - A brown dog swims through water outdoors with a tennis ball in its mouth.
33
+ - source_sentence: A dog is swimming.
34
+ sentences:
35
+ - a black dog swimming in the water with a tennis ball in his mouth
36
+ - A dog with yellow fur swims, neck deep, in water.
37
+ - A brown dog running through a large orange tube.
38
+ - source_sentence: A dog is swimming.
39
+ sentences:
40
+ - A dog with golden hair swims through water.
41
+ - A golden haired dog is lying in a boat that is traveling on a lake.
42
+ - A dog with golden hair swims through water.
43
+ - source_sentence: A dog is swimming.
44
+ sentences:
45
+ - A tan dog splashes as he swims through the water.
46
+ - A man and young boy asleep in a chair.
47
+ - A dog in a harness chasing a red ball.
48
+ - source_sentence: A dog is in the water.
49
+ sentences:
50
+ - A big brown dog jumps into a swimming pool on the backyard.
51
+ - Wet brown dog swims towards camera.
52
+ - The dog is rolling around in the grass.
53
+ model-index:
54
+ - name: SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: sts test
61
+ type: sts-test
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.8170317205826663
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.827406310000667
68
+ name: Spearman Cosine
69
+ - type: pearson_manhattan
70
+ value: 0.8085162876731988
71
+ name: Pearson Manhattan
72
+ - type: spearman_manhattan
73
+ value: 0.8050045835065848
74
+ name: Spearman Manhattan
75
+ - type: pearson_euclidean
76
+ value: 0.8122787407180172
77
+ name: Pearson Euclidean
78
+ - type: spearman_euclidean
79
+ value: 0.809299222491485
80
+ name: Spearman Euclidean
81
+ - type: pearson_dot
82
+ value: 0.7657571947414553
83
+ name: Pearson Dot
84
+ - type: spearman_dot
85
+ value: 0.7564706925314776
86
+ name: Spearman Dot
87
+ - type: pearson_max
88
+ value: 0.8170317205826663
89
+ name: Pearson Max
90
+ - type: spearman_max
91
+ value: 0.827406310000667
92
+ name: Spearman Max
93
+ ---
94
+
95
+ # SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
96
+
97
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
+
99
+ ## Model Details
100
+
101
+ ### Model Description
102
+ - **Model Type:** Sentence Transformer
103
+ - **Base model:** [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae) <!-- at revision 5ad87b09309fdc0a114357f37b45c4de7e4dcec6 -->
104
+ - **Maximum Sequence Length:** 512 tokens
105
+ - **Output Dimensionality:** 768 tokens
106
+ - **Similarity Function:** Cosine Similarity
107
+ - **Training Dataset:**
108
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
109
+ - **Language:** en
110
+ <!-- - **License:** Unknown -->
111
+
112
+ ### Model Sources
113
+
114
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
115
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
116
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
117
+
118
+ ### Full Model Architecture
119
+
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
124
+ )
125
+ ```
126
+
127
+ ## Usage
128
+
129
+ ### Direct Usage (Sentence Transformers)
130
+
131
+ First install the Sentence Transformers library:
132
+
133
+ ```bash
134
+ pip install -U sentence-transformers
135
+ ```
136
+
137
+ Then you can load this model and run inference.
138
+ ```python
139
+ from sentence_transformers import SentenceTransformer
140
+
141
+ # Download from the 🤗 Hub
142
+ model = SentenceTransformer("ielabgroup/Starbucks_STS")
143
+ # Run inference
144
+ sentences = [
145
+ 'A dog is in the water.',
146
+ 'Wet brown dog swims towards camera.',
147
+ 'The dog is rolling around in the grass.',
148
+ ]
149
+ embeddings = model.encode(sentences)
150
+ print(embeddings.shape)
151
+ # [3, 768]
152
+
153
+ # Get the similarity scores for the embeddings
154
+ similarities = model.similarity(embeddings, embeddings)
155
+ print(similarities.shape)
156
+ # [3, 3]
157
+ ```
158
+
159
+ <!--
160
+ ### Direct Usage (Transformers)
161
+
162
+ <details><summary>Click to see the direct usage in Transformers</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Downstream Usage (Sentence Transformers)
169
+
170
+ You can finetune this model on your own dataset.
171
+
172
+ <details><summary>Click to expand</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
+ ### Out-of-Scope Use
179
+
180
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
181
+ -->
182
+
183
+ ## Evaluation
184
+
185
+ ### Metrics
186
+
187
+ #### Semantic Similarity
188
+ * Dataset: `sts-test`
189
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:--------------------|:-----------|
193
+ | pearson_cosine | 0.817 |
194
+ | **spearman_cosine** | **0.8274** |
195
+ | pearson_manhattan | 0.8085 |
196
+ | spearman_manhattan | 0.805 |
197
+ | pearson_euclidean | 0.8123 |
198
+ | spearman_euclidean | 0.8093 |
199
+ | pearson_dot | 0.7658 |
200
+ | spearman_dot | 0.7565 |
201
+ | pearson_max | 0.817 |
202
+ | spearman_max | 0.8274 |
203
+
204
+ <!--
205
+ ## Bias, Risks and Limitations
206
+
207
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
208
+ -->
209
+
210
+ <!--
211
+ ### Recommendations
212
+
213
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
214
+ -->
215
+
216
+ ## Training Details
217
+
218
+ ### Training Dataset
219
+
220
+ #### all-nli
221
+
222
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
223
+ * Size: 557,850 training samples
224
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | anchor | positive | negative |
227
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
228
+ | type | string | string | string |
229
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
230
+ * Samples:
231
+ | anchor | positive | negative |
232
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
233
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
234
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
235
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
236
+ * Loss: <code>starbucks_loss.StarbucksLoss</code> with these parameters:
237
+ ```json
238
+ {
239
+ "loss": "MatryoshkaLoss",
240
+ "n_selections_per_step": -1,
241
+ "last_layer_weight": 1.0,
242
+ "prior_layers_weight": 1.0,
243
+ "kl_div_weight": 1.0,
244
+ "kl_temperature": 0.3,
245
+ "matryoshka_layers": [
246
+ 1,
247
+ 3,
248
+ 5,
249
+ 7,
250
+ 9,
251
+ 11
252
+ ],
253
+ "matryoshka_dims": [
254
+ 32,
255
+ 64,
256
+ 128,
257
+ 256,
258
+ 512,
259
+ 768
260
+ ]
261
+ }
262
+ ```
263
+
264
+ ### Training Hyperparameters
265
+ #### Non-Default Hyperparameters
266
+
267
+ - `per_device_train_batch_size`: 128
268
+ - `per_device_eval_batch_size`: 128
269
+ - `num_train_epochs`: 1
270
+ - `warmup_ratio`: 0.1
271
+ - `fp16`: True
272
+ - `gradient_checkpointing`: True
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: no
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 128
282
+ - `per_device_eval_batch_size`: 128
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 1
286
+ - `eval_accumulation_steps`: None
287
+ - `torch_empty_cache_steps`: None
288
+ - `learning_rate`: 5e-05
289
+ - `weight_decay`: 0.0
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 1.0
294
+ - `num_train_epochs`: 1
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: linear
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.1
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: True
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: False
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `fsdp_transformer_layer_cls_to_wrap`: None
340
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
341
+ - `deepspeed`: None
342
+ - `label_smoothing_factor`: 0.0
343
+ - `optim`: adamw_torch
344
+ - `optim_args`: None
345
+ - `adafactor`: False
346
+ - `group_by_length`: False
347
+ - `length_column_name`: length
348
+ - `ddp_find_unused_parameters`: None
349
+ - `ddp_bucket_cap_mb`: None
350
+ - `ddp_broadcast_buffers`: False
351
+ - `dataloader_pin_memory`: True
352
+ - `dataloader_persistent_workers`: False
353
+ - `skip_memory_metrics`: True
354
+ - `use_legacy_prediction_loop`: False
355
+ - `push_to_hub`: False
356
+ - `resume_from_checkpoint`: None
357
+ - `hub_model_id`: None
358
+ - `hub_strategy`: every_save
359
+ - `hub_private_repo`: False
360
+ - `hub_always_push`: False
361
+ - `gradient_checkpointing`: True
362
+ - `gradient_checkpointing_kwargs`: None
363
+ - `include_inputs_for_metrics`: False
364
+ - `eval_do_concat_batches`: True
365
+ - `fp16_backend`: auto
366
+ - `push_to_hub_model_id`: None
367
+ - `push_to_hub_organization`: None
368
+ - `mp_parameters`:
369
+ - `auto_find_batch_size`: False
370
+ - `full_determinism`: False
371
+ - `torchdynamo`: None
372
+ - `ray_scope`: last
373
+ - `ddp_timeout`: 1800
374
+ - `torch_compile`: False
375
+ - `torch_compile_backend`: None
376
+ - `torch_compile_mode`: None
377
+ - `dispatch_batches`: None
378
+ - `split_batches`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `eval_use_gather_object`: False
386
+ - `batch_sampler`: batch_sampler
387
+ - `multi_dataset_batch_sampler`: proportional
388
+
389
+ </details>
390
+
391
+ ### Training Logs
392
+ | Epoch | Step | Training Loss | sts-test_spearman_cosine |
393
+ |:------:|:----:|:-------------:|:------------------------:|
394
+ | 0.0229 | 100 | 16.7727 | - |
395
+ | 0.0459 | 200 | 9.653 | - |
396
+ | 0.0688 | 300 | 8.3187 | - |
397
+ | 0.0918 | 400 | 7.748 | - |
398
+ | 0.1147 | 500 | 7.2587 | - |
399
+ | 0.1376 | 600 | 6.734 | - |
400
+ | 0.1606 | 700 | 6.4463 | - |
401
+ | 0.1835 | 800 | 6.299 | - |
402
+ | 0.2065 | 900 | 5.9946 | - |
403
+ | 0.2294 | 1000 | 5.9348 | - |
404
+ | 0.2524 | 1100 | 5.7723 | - |
405
+ | 0.2753 | 1200 | 5.5822 | - |
406
+ | 0.2982 | 1300 | 5.4233 | - |
407
+ | 0.3212 | 1400 | 5.3427 | - |
408
+ | 0.3441 | 1500 | 5.3132 | - |
409
+ | 0.3671 | 1600 | 5.3149 | - |
410
+ | 0.3900 | 1700 | 5.3007 | - |
411
+ | 0.4129 | 1800 | 4.9539 | - |
412
+ | 0.4359 | 1900 | 4.9308 | - |
413
+ | 0.4588 | 2000 | 4.8171 | - |
414
+ | 0.4818 | 2100 | 5.0181 | - |
415
+ | 0.5047 | 2200 | 4.9631 | - |
416
+ | 0.5276 | 2300 | 4.8125 | - |
417
+ | 0.5506 | 2400 | 4.7133 | - |
418
+ | 0.5735 | 2500 | 4.5809 | - |
419
+ | 0.5965 | 2600 | 4.6093 | - |
420
+ | 0.6194 | 2700 | 4.6723 | - |
421
+ | 0.6423 | 2800 | 4.5526 | - |
422
+ | 0.6653 | 2900 | 4.4967 | - |
423
+ | 0.6882 | 3000 | 4.4178 | - |
424
+ | 0.7112 | 3100 | 4.4333 | - |
425
+ | 0.7341 | 3200 | 4.3289 | - |
426
+ | 0.7571 | 3300 | 4.5199 | - |
427
+ | 0.7800 | 3400 | 4.3389 | - |
428
+ | 0.8029 | 3500 | 4.3394 | - |
429
+ | 0.8259 | 3600 | 4.2423 | - |
430
+ | 0.8488 | 3700 | 4.3219 | - |
431
+ | 0.8718 | 3800 | 4.3297 | - |
432
+ | 0.8947 | 3900 | 4.3132 | - |
433
+ | 0.9176 | 4000 | 4.2616 | - |
434
+ | 0.9406 | 4100 | 4.2233 | - |
435
+ | 0.9635 | 4200 | 4.1912 | - |
436
+ | 0.9865 | 4300 | 4.1838 | - |
437
+ | 1.0 | 4359 | - | 0.8274 |
438
+
439
+
440
+ ### Framework Versions
441
+ - Python: 3.10.13
442
+ - Sentence Transformers: 3.1.1
443
+ - Transformers: 4.44.2
444
+ - PyTorch: 2.4.1+cu121
445
+ - Accelerate: 0.33.0
446
+ - Datasets: 2.21.0
447
+ - Tokenizers: 0.19.1
448
+
449
+ ## Citation
450
+
451
+ ### BibTeX
452
+
453
+ #### Sentence Transformers
454
+ ```bibtex
455
+ @inproceedings{reimers-2019-sentence-bert,
456
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
457
+ author = "Reimers, Nils and Gurevych, Iryna",
458
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
459
+ month = "11",
460
+ year = "2019",
461
+ publisher = "Association for Computational Linguistics",
462
+ url = "https://arxiv.org/abs/1908.10084",
463
+ }
464
+ ```
465
+
466
+ <!--
467
+ ## Glossary
468
+
469
+ *Clearly define terms in order to be accessible across audiences.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Authors
474
+
475
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
476
+ -->
477
+
478
+ <!--
479
+ ## Model Card Contact
480
+
481
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
482
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/scratch/project/neural_ir/dylan/bertLlama/STS_full/all_nli/ielabgroup-bert-base-uncased-fineweb100bt-matryoshka-mae/starbucks/final",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5f8d408691198bcf30c4f4b2163951158042c89574549a55aa42dd6caeefa72
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff