update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ps
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- google/fleurs
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Base Pashto - Augmented
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: google/fleurs
|
20 |
+
type: google/fleurs
|
21 |
+
config: ps_af
|
22 |
+
split: test
|
23 |
+
args: ps_af
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 59.64817110973342
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Base Pashto - Augmented
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.7901
|
38 |
+
- Wer: 59.6482
|
39 |
+
- Cer: 27.0947
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 1e-05
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 4
|
63 |
+
- total_train_batch_size: 64
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 30
|
67 |
+
- training_steps: 600
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
73 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
|
74 |
+
| 1.1215 | 2.38 | 100 | 0.9444 | 68.3354 | 30.2694 |
|
75 |
+
| 0.8268 | 4.75 | 200 | 0.8267 | 63.2440 | 28.2636 |
|
76 |
+
| 0.6912 | 7.14 | 300 | 0.7959 | 62.2443 | 28.2123 |
|
77 |
+
| 0.5725 | 9.52 | 400 | 0.7896 | 60.5859 | 27.6920 |
|
78 |
+
| 0.5231 | 11.89 | 500 | 0.7884 | 59.8574 | 27.1273 |
|
79 |
+
| 0.4752 | 14.28 | 600 | 0.7901 | 59.6482 | 27.0947 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.26.0.dev0
|
85 |
+
- Pytorch 1.13.1+cu116
|
86 |
+
- Datasets 2.8.1.dev0
|
87 |
+
- Tokenizers 0.13.2
|