Create handler.py
Browse files- handler.py +28 -0
handler.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer,QuantoConfig
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
|
4 |
+
class EndpointHandler():
|
5 |
+
def __init__(self, path=""):
|
6 |
+
# load the optimized model
|
7 |
+
model = M2M100ForConditionalGeneration.from_pretrained(path)
|
8 |
+
tokenizer = M2M100Tokenizer.from_pretrained(path)
|
9 |
+
# create inference pipeline
|
10 |
+
self.pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
|
13 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
14 |
+
"""
|
15 |
+
Args:
|
16 |
+
data (:obj:):
|
17 |
+
includes the input data and the parameters for the inference.
|
18 |
+
Return:
|
19 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
20 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
21 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
22 |
+
"""
|
23 |
+
text = data.get("text", data)
|
24 |
+
lang = data.get("langId",data)
|
25 |
+
encoded = tokenizer(text, return_tensors="pt")
|
26 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(lang))
|
27 |
+
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
28 |
+
return {'transdlated':result}
|