File size: 2,045 Bytes
1c519c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
language:
- ko
license: mit
base_model: imTak/whisper_large_v3_ko_ft_ft
tags:
- generated_from_trainer
datasets:
- imTak/korean-speak-Develop
metrics:
- wer
model-index:
- name: Whisper large v3 turbo Korean-Develop
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Develop
      type: imTak/korean-speak-Develop
      args: 'config: ko, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 16.64530599166934
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper large v3 turbo Korean-Develop

This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft_ft) on the Develop dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2410
- Wer: 16.6453

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2119        | 1.9455 | 500  | 0.2721          | 22.6690 |
| 0.0714        | 3.8911 | 1000 | 0.2542          | 19.9135 |
| 0.0145        | 5.8366 | 1500 | 0.2417          | 18.5037 |
| 0.0018        | 7.7821 | 2000 | 0.2410          | 16.6453 |


### Framework versions

- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3