File size: 3,406 Bytes
7f56402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
base_model: unsloth/llama-3-8b-bnb-4bit
library_name: peft
license: llama3
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Meta-Llama-3-8B_magiccoder_ortho
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Meta-Llama-3-8B_magiccoder_ortho

This model is a fine-tuned version of [unsloth/llama-3-8b-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2979

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3729        | 0.0259 | 4    | 1.4553          |
| 1.4282        | 0.0518 | 8    | 1.4025          |
| 1.3582        | 0.0777 | 12   | 1.3661          |
| 1.3765        | 0.1036 | 16   | 1.3732          |
| 1.412         | 0.1296 | 20   | 1.3709          |
| 1.3139        | 0.1555 | 24   | 1.3703          |
| 1.3527        | 0.1814 | 28   | 1.3569          |
| 1.3366        | 0.2073 | 32   | 1.3696          |
| 1.3585        | 0.2332 | 36   | 1.3574          |
| 1.4341        | 0.2591 | 40   | 1.3561          |
| 1.3608        | 0.2850 | 44   | 1.3471          |
| 1.2669        | 0.3109 | 48   | 1.3583          |
| 1.3432        | 0.3368 | 52   | 1.3500          |
| 1.3825        | 0.3628 | 56   | 1.3465          |
| 1.3424        | 0.3887 | 60   | 1.3365          |
| 1.3974        | 0.4146 | 64   | 1.3424          |
| 1.2641        | 0.4405 | 68   | 1.3373          |
| 1.3123        | 0.4664 | 72   | 1.3308          |
| 1.2767        | 0.4923 | 76   | 1.3429          |
| 1.3543        | 0.5182 | 80   | 1.3270          |
| 1.3019        | 0.5441 | 84   | 1.3380          |
| 1.3383        | 0.5700 | 88   | 1.3378          |
| 1.4165        | 0.5960 | 92   | 1.3250          |
| 1.2437        | 0.6219 | 96   | 1.3246          |
| 1.32          | 0.6478 | 100  | 1.3234          |
| 1.2362        | 0.6737 | 104  | 1.3309          |
| 1.2529        | 0.6996 | 108  | 1.3166          |
| 1.2605        | 0.7255 | 112  | 1.3099          |
| 1.3089        | 0.7514 | 116  | 1.3075          |
| 1.2937        | 0.7773 | 120  | 1.3063          |
| 1.3127        | 0.8032 | 124  | 1.3017          |
| 1.308         | 0.8291 | 128  | 1.3033          |
| 1.2962        | 0.8551 | 132  | 1.3026          |
| 1.2542        | 0.8810 | 136  | 1.3004          |
| 1.2808        | 0.9069 | 140  | 1.2992          |
| 1.242         | 0.9328 | 144  | 1.2967          |
| 1.265         | 0.9587 | 148  | 1.2990          |
| 1.2364        | 0.9846 | 152  | 1.2979          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1