File size: 3,896 Bytes
c0152da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: unsloth/qwen2-7b-bnb-4bit
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Qwen2-7B_pct_ortho
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Qwen2-7B_pct_ortho

This model is a fine-tuned version of [unsloth/qwen2-7b-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1027

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1596        | 0.0206 | 8    | 2.0832          |
| 2.095         | 0.0412 | 16   | 2.0465          |
| 2.1302        | 0.0618 | 24   | 2.0538          |
| 2.0886        | 0.0824 | 32   | 2.0696          |
| 2.1386        | 0.1031 | 40   | 2.0840          |
| 2.141         | 0.1237 | 48   | 2.0979          |
| 2.1451        | 0.1443 | 56   | 2.0972          |
| 2.1323        | 0.1649 | 64   | 2.1059          |
| 2.152         | 0.1855 | 72   | 2.1132          |
| 2.2215        | 0.2061 | 80   | 2.1120          |
| 2.187         | 0.2267 | 88   | 2.1149          |
| 2.1712        | 0.2473 | 96   | 2.1171          |
| 2.2009        | 0.2680 | 104  | 2.1281          |
| 2.1177        | 0.2886 | 112  | 2.1351          |
| 2.1735        | 0.3092 | 120  | 2.1326          |
| 2.1785        | 0.3298 | 128  | 2.1293          |
| 2.1826        | 0.3504 | 136  | 2.1398          |
| 2.1799        | 0.3710 | 144  | 2.1419          |
| 2.1817        | 0.3916 | 152  | 2.1564          |
| 2.2199        | 0.4122 | 160  | 2.1452          |
| 2.2533        | 0.4329 | 168  | 2.1420          |
| 2.1606        | 0.4535 | 176  | 2.1434          |
| 2.1773        | 0.4741 | 184  | 2.1394          |
| 2.2177        | 0.4947 | 192  | 2.1369          |
| 2.1614        | 0.5153 | 200  | 2.1360          |
| 2.2003        | 0.5359 | 208  | 2.1389          |
| 2.2389        | 0.5565 | 216  | 2.1424          |
| 2.1515        | 0.5771 | 224  | 2.1329          |
| 2.16          | 0.5977 | 232  | 2.1388          |
| 2.1584        | 0.6184 | 240  | 2.1229          |
| 2.1446        | 0.6390 | 248  | 2.1275          |
| 2.19          | 0.6596 | 256  | 2.1256          |
| 2.1612        | 0.6802 | 264  | 2.1182          |
| 2.2218        | 0.7008 | 272  | 2.1202          |
| 2.1112        | 0.7214 | 280  | 2.1163          |
| 2.2125        | 0.7420 | 288  | 2.1118          |
| 2.1432        | 0.7626 | 296  | 2.1115          |
| 2.1537        | 0.7833 | 304  | 2.1066          |
| 2.1391        | 0.8039 | 312  | 2.1069          |
| 2.1831        | 0.8245 | 320  | 2.1115          |
| 2.1835        | 0.8451 | 328  | 2.1099          |
| 2.1461        | 0.8657 | 336  | 2.1126          |
| 2.183         | 0.8863 | 344  | 2.1060          |
| 2.1507        | 0.9069 | 352  | 2.1017          |
| 2.216         | 0.9275 | 360  | 2.1033          |
| 2.1464        | 0.9481 | 368  | 2.1032          |
| 2.1925        | 0.9688 | 376  | 2.1028          |
| 2.1514        | 0.9894 | 384  | 2.1027          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1