Ankur Goyal commited on
Commit
1e3ebac
·
1 Parent(s): 723ec3f

Revert readme change

Browse files
Files changed (1) hide show
  1. README.md +39 -30
README.md CHANGED
@@ -1,48 +1,57 @@
1
  ---
 
 
2
  license: mit
3
- tags:
4
- - generated_from_keras_callback
5
- model-index:
6
- - name: layoutlm-document-qa
7
- results: []
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
- probably proofread and complete it, then remove this comment. -->
12
 
13
- # layoutlm-document-qa
14
 
15
- This model is a fine-tuned version of [impira/layoutlm-document-qa](https://huggingface.co/impira/layoutlm-document-qa) on an unknown dataset.
16
- It achieves the following results on the evaluation set:
17
 
 
18
 
19
- ## Model description
20
 
21
- More information needed
22
 
23
- ## Intended uses & limitations
 
24
 
25
- More information needed
 
 
 
 
26
 
27
- ## Training and evaluation data
 
 
 
 
28
 
29
- More information needed
 
 
 
 
30
 
31
- ## Training procedure
 
 
 
 
32
 
33
- ### Training hyperparameters
 
 
 
 
 
34
 
35
- The following hyperparameters were used during training:
36
- - optimizer: None
37
- - training_precision: float32
38
 
39
- ### Training results
40
 
41
-
42
-
43
- ### Framework versions
44
-
45
- - Transformers 4.22.0.dev0
46
- - TensorFlow 2.9.2
47
- - Datasets 2.4.0
48
- - Tokenizers 0.12.1
 
1
  ---
2
+ language: en
3
+ thumbnail: https://uploads-ssl.webflow.com/5e3898dff507782a6580d710/614a23fcd8d4f7434c765ab9_logo.png
4
  license: mit
 
 
 
 
 
5
  ---
6
 
7
+ # LayoutLM for Visual Question Answering
 
8
 
9
+ This is a fine-tuned version of the multi-modal [LayoutLM](https://aka.ms/layoutlm) model for the task of question answering on documents. It has been fine-tuned on
10
 
11
+ ## Model details
 
12
 
13
+ The LayoutLM model was developed at Microsoft ([paper](https://arxiv.org/abs/1912.13318)) as a general purpose tool for understanding documents. This model is a fine-tuned checkpoint of [LayoutLM-Base-Cased](https://huggingface.co/microsoft/layoutlm-base-uncased), using both the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) and [DocVQA](https://www.docvqa.org/) datasets.
14
 
15
+ ## Getting started with the model
16
 
17
+ To run these examples, you must have [PIL](https://pillow.readthedocs.io/en/stable/installation.html), [pytesseract](https://pypi.org/project/pytesseract/), and [PyTorch](https://pytorch.org/get-started/locally/) installed in addition to [transformers](https://huggingface.co/docs/transformers/index).
18
 
19
+ ```python
20
+ from transformers import AutoTokenizer, pipeline
21
 
22
+ tokenizer = AutoTokenizer.from_pretrained(
23
+ "impira/layoutlm-document-qa",
24
+ add_prefix_space=True,
25
+ trust_remote_code=True,
26
+ )
27
 
28
+ nlp = pipeline(
29
+ model="impira/layoutlm-document-qa",
30
+ tokenizer=tokenizer,
31
+ trust_remote_code=True,
32
+ )
33
 
34
+ nlp(
35
+ "https://templates.invoicehome.com/invoice-template-us-neat-750px.png",
36
+ "What is the invoice number?"
37
+ )
38
+ # {'score': 0.9943977, 'answer': 'us-001', 'start': 15, 'end': 15}
39
 
40
+ nlp(
41
+ "https://miro.medium.com/max/787/1*iECQRIiOGTmEFLdWkVIH2g.jpeg",
42
+ "What is the purchase amount?"
43
+ )
44
+ # {'score': 0.9912159, 'answer': '$1,000,000,000', 'start': 97, 'end': 97}
45
 
46
+ nlp(
47
+ "https://www.accountingcoach.com/wp-content/uploads/2013/10/[email protected]",
48
+ "What are the 2020 net sales?"
49
+ )
50
+ # {'score': 0.59147286, 'answer': '$ 3,750', 'start': 19, 'end': 20}
51
+ ```
52
 
53
+ **NOTE**: This model relies on a [model definition](https://github.com/huggingface/transformers/pull/18407) and [pipeline](https://github.com/huggingface/transformers/pull/18414) that are currently in review to be included in the transformers project. In the meantime, you'll have to use the `trust_remote_code=True` flag to run this model.
 
 
54
 
55
+ ## About us
56
 
57
+ This model was created by the team at [Impira](https://www.impira.com/).