Ankur Goyal commited on
Commit
1f7bede
·
1 Parent(s): 02daaaf

Remove model in anticipation of PR #18407

Browse files
Files changed (3) hide show
  1. config.json +0 -4
  2. configuration_layoutlm.py +0 -3
  3. modeling_layoutlm.py +0 -147
config.json CHANGED
@@ -3,10 +3,6 @@
3
  "architectures": [
4
  "LayoutLMForQuestionAnswering"
5
  ],
6
- "auto_map": {
7
- "AutoConfig": "configuration_layoutlm.LayoutLMConfig",
8
- "AutoModelForQuestionAnswering": "modeling_layoutlm.LayoutLMForQuestionAnswering"
9
- },
10
  "custom_pipelines": {
11
  "document-question-answering": {
12
  "impl": "pipeline_document_question_answering.DocumentQuestionAnsweringPipeline",
 
3
  "architectures": [
4
  "LayoutLMForQuestionAnswering"
5
  ],
 
 
 
 
6
  "custom_pipelines": {
7
  "document-question-answering": {
8
  "impl": "pipeline_document_question_answering.DocumentQuestionAnsweringPipeline",
configuration_layoutlm.py DELETED
@@ -1,3 +0,0 @@
1
- # This model just uses the existing LayoutLMConfig which is just imported
2
- # as a thin wrapper
3
- from transformers.models.layoutlm.configuration_layoutlm import LayoutLMConfig
 
 
 
 
modeling_layoutlm.py DELETED
@@ -1,147 +0,0 @@
1
- # NOTE: This code is currently under review for inclusion in the main
2
- # huggingface/transformers repository:
3
- # https://github.com/huggingface/transformers/pull/18407
4
- """ PyTorch LayoutLM model."""
5
-
6
-
7
- import math
8
- from typing import Optional, Tuple, Union
9
-
10
- import torch
11
- from torch import nn
12
- from torch.nn import CrossEntropyLoss
13
-
14
- from transformers.modeling_outputs import QuestionAnsweringModelOutput
15
- from transformers.models.layoutlm import LayoutLMModel, LayoutLMPreTrainedModel
16
-
17
-
18
- class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel):
19
- def __init__(self, config, has_visual_segment_embedding=True):
20
- super().__init__(config)
21
- self.num_labels = config.num_labels
22
-
23
- self.layoutlm = LayoutLMModel(config)
24
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
25
-
26
- # Initialize weights and apply final processing
27
- self.post_init()
28
-
29
- def get_input_embeddings(self):
30
- return self.layoutlm.embeddings.word_embeddings
31
-
32
- def forward(
33
- self,
34
- input_ids: Optional[torch.LongTensor] = None,
35
- bbox: Optional[torch.LongTensor] = None,
36
- attention_mask: Optional[torch.FloatTensor] = None,
37
- token_type_ids: Optional[torch.LongTensor] = None,
38
- position_ids: Optional[torch.LongTensor] = None,
39
- head_mask: Optional[torch.FloatTensor] = None,
40
- inputs_embeds: Optional[torch.FloatTensor] = None,
41
- start_positions: Optional[torch.LongTensor] = None,
42
- end_positions: Optional[torch.LongTensor] = None,
43
- output_attentions: Optional[bool] = None,
44
- output_hidden_states: Optional[bool] = None,
45
- return_dict: Optional[bool] = None,
46
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
47
- r"""
48
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
49
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
50
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
51
- are not taken into account for computing the loss.
52
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
53
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
54
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
55
- are not taken into account for computing the loss.
56
-
57
- Returns:
58
-
59
- Example:
60
-
61
- In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
62
- a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
63
-
64
- ```python
65
- >>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
66
- >>> from datasets import load_dataset
67
- >>> import torch
68
-
69
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased", add_prefix_space=True)
70
- >>> model = LayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased")
71
-
72
- >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
73
- >>> example = dataset[0]
74
- >>> question = "what's his name?"
75
- >>> words = example["tokens"]
76
- >>> boxes = example["bboxes"]
77
-
78
- >>> encoding = tokenizer(
79
- ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt"
80
- ... )
81
- >>> bbox = []
82
- >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)):
83
- ... if s == 1:
84
- ... bbox.append(boxes[w])
85
- ... elif i == tokenizer.sep_token_id:
86
- ... bbox.append([1000] * 4)
87
- ... else:
88
- ... bbox.append([0] * 4)
89
- >>> encoding["bbox"] = torch.tensor([bbox])
90
-
91
- >>> outputs = model(**encoding)
92
- >>> loss = outputs.loss
93
- >>> start_scores = outputs.start_logits
94
- >>> end_scores = outputs.end_logits
95
- ```
96
- """
97
-
98
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
99
-
100
- outputs = self.layoutlm(
101
- input_ids=input_ids,
102
- bbox=bbox,
103
- attention_mask=attention_mask,
104
- token_type_ids=token_type_ids,
105
- position_ids=position_ids,
106
- head_mask=head_mask,
107
- inputs_embeds=inputs_embeds,
108
- output_attentions=output_attentions,
109
- output_hidden_states=output_hidden_states,
110
- return_dict=return_dict,
111
- )
112
-
113
- sequence_output = outputs[0]
114
-
115
- logits = self.qa_outputs(sequence_output)
116
- start_logits, end_logits = logits.split(1, dim=-1)
117
- start_logits = start_logits.squeeze(-1).contiguous()
118
- end_logits = end_logits.squeeze(-1).contiguous()
119
-
120
- total_loss = None
121
- if start_positions is not None and end_positions is not None:
122
- # If we are on multi-GPU, split add a dimension
123
- if len(start_positions.size()) > 1:
124
- start_positions = start_positions.squeeze(-1)
125
- if len(end_positions.size()) > 1:
126
- end_positions = end_positions.squeeze(-1)
127
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
128
- ignored_index = start_logits.size(1)
129
- start_positions = start_positions.clamp(0, ignored_index)
130
- end_positions = end_positions.clamp(0, ignored_index)
131
-
132
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
133
- start_loss = loss_fct(start_logits, start_positions)
134
- end_loss = loss_fct(end_logits, end_positions)
135
- total_loss = (start_loss + end_loss) / 2
136
-
137
- if not return_dict:
138
- output = (start_logits, end_logits) + outputs[2:]
139
- return ((total_loss,) + output) if total_loss is not None else output
140
-
141
- return QuestionAnsweringModelOutput(
142
- loss=total_loss,
143
- start_logits=start_logits,
144
- end_logits=end_logits,
145
- hidden_states=outputs.hidden_states,
146
- attentions=outputs.attentions,
147
- )