File size: 4,071 Bytes
d868172
 
5b87284
d868172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0990522
7b590c4
 
 
 
5b87284
 
d868172
 
5b87284
d868172
7b590c4
d868172
 
 
 
 
 
 
 
 
 
 
5b87284
d868172
5b87284
d868172
 
8d26403
d868172
 
 
5b87284
 
 
d868172
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from transformers import Pipeline
import nltk
import torch

nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")
import requests


def get_wikipedia_page_props(input_str: str):
    """
    Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia.
    If the request fails, it falls back to using the OpenRefine Wikidata API.

    Args:
        input_str (str): The input string in the format "page_name >> language".

    Returns:
        str: The QID or "NIL" if the QID is not found.
    """
    try:
        # Preprocess the input string
        page_name, language = input_str.split(" >> ")
        page_name = page_name.strip()
        language = language.strip()
    except ValueError:
        return "Invalid input format. Use 'page_name >> language'."

    wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
    wikipedia_params = {
        "action": "query",
        "prop": "pageprops",
        "format": "json",
        "titles": page_name,
    }

    qid = "NIL"
    try:
        # Attempt to fetch from Wikipedia API
        response = requests.get(wikipedia_url, params=wikipedia_params)
        response.raise_for_status()
        data = response.json()

        if "pages" in data["query"]:
            page_id = list(data["query"]["pages"].keys())[0]

            if "pageprops" in data["query"]["pages"][page_id]:
                page_props = data["query"]["pages"][page_id]["pageprops"]

                if "wikibase_item" in page_props:
                    return page_props["wikibase_item"]
                else:
                    return qid
            else:
                return qid
    except Exception as e:
        return qid


def get_wikipedia_title(qid, language="en"):
    url = f"https://www.wikidata.org/w/api.php"
    params = {
        "action": "wbgetentities",
        "format": "json",
        "ids": qid,
        "props": "sitelinks/urls",
        "sitefilter": f"{language}wiki",
    }

    response = requests.get(url, params=params)
    data = response.json()

    try:
        title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
        url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
        return title, url
    except KeyError:
        return "NIL", "None"


class NelPipeline(Pipeline):

    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "text" in kwargs:
            preprocess_kwargs["text"] = kwargs["text"]

        return preprocess_kwargs, {}, {}

    def preprocess(self, text, **kwargs):

        outputs = self.model.generate(
            **self.tokenizer([text], return_tensors="pt"),
            num_beams=5,
            num_return_sequences=5,
            max_new_tokens=30,
        )
        # print(outputs)
        # token_ids, scores = outputs.sequences, outputs.sequences_scores
        # scores_tensor = scores.clone().detach()
        # probabilities = torch.exp(scores_tensor)
        # percentages = (probabilities * 100.0).cpu().numpy().tolist()

        wikipedia_predictions = self.tokenizer.batch_decode(
            outputs, skip_special_tokens=True
        )
        # print(f"Decoded: {wikipedia_predictons}")np.round(percentages[i], 2)

        return wikipedia_predictions, [0, 0, 0, 0, 0]

    def _forward(self, inputs):
        return inputs

    def postprocess(self, outputs, **kwargs):
        """
        Postprocess the outputs of the model
        :param outputs:
        :param kwargs:
        :return:
        """
        wikipedia_predictions, percentages = outputs
        results = []
        for idx, wikipedia_name in enumerate(outputs):
            # Get QID
            qid = get_wikipedia_page_props(wikipedia_name)
            # print(f"{wikipedia_name} -- QID: {qid}")

            # Get Wikipedia title and URL
            title, url = get_wikipedia_title(qid)
            results.append(
                {"title": title, "qid": qid, "url": url, "score": percentages[idx]}
            )

        return results