|
from transformers import Pipeline |
|
import nltk |
|
import torch |
|
|
|
nltk.download("averaged_perceptron_tagger") |
|
nltk.download("averaged_perceptron_tagger_eng") |
|
import requests |
|
|
|
|
|
def get_wikipedia_page_props(input_str: str): |
|
""" |
|
Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia. |
|
If the request fails, it falls back to using the OpenRefine Wikidata API. |
|
|
|
Args: |
|
input_str (str): The input string in the format "page_name >> language". |
|
|
|
Returns: |
|
str: The QID or "NIL" if the QID is not found. |
|
""" |
|
try: |
|
|
|
page_name, language = input_str.split(" >> ") |
|
page_name = page_name.strip() |
|
language = language.strip() |
|
except ValueError: |
|
return "Invalid input format. Use 'page_name >> language'." |
|
|
|
wikipedia_url = f"https://{language}.wikipedia.org/w/api.php" |
|
wikipedia_params = { |
|
"action": "query", |
|
"prop": "pageprops", |
|
"format": "json", |
|
"titles": page_name, |
|
} |
|
|
|
qid = "NIL" |
|
try: |
|
|
|
response = requests.get(wikipedia_url, params=wikipedia_params) |
|
response.raise_for_status() |
|
data = response.json() |
|
|
|
if "pages" in data["query"]: |
|
page_id = list(data["query"]["pages"].keys())[0] |
|
|
|
if "pageprops" in data["query"]["pages"][page_id]: |
|
page_props = data["query"]["pages"][page_id]["pageprops"] |
|
|
|
if "wikibase_item" in page_props: |
|
return page_props["wikibase_item"] |
|
else: |
|
return qid |
|
else: |
|
return qid |
|
except Exception as e: |
|
return qid |
|
|
|
|
|
def get_wikipedia_title(qid, language="en"): |
|
url = f"https://www.wikidata.org/w/api.php" |
|
params = { |
|
"action": "wbgetentities", |
|
"format": "json", |
|
"ids": qid, |
|
"props": "sitelinks/urls", |
|
"sitefilter": f"{language}wiki", |
|
} |
|
|
|
response = requests.get(url, params=params) |
|
data = response.json() |
|
|
|
try: |
|
title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"] |
|
url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"] |
|
return title, url |
|
except KeyError: |
|
return "NIL", "None" |
|
|
|
|
|
class NelPipeline(Pipeline): |
|
|
|
def _sanitize_parameters(self, **kwargs): |
|
preprocess_kwargs = {} |
|
if "text" in kwargs: |
|
preprocess_kwargs["text"] = kwargs["text"] |
|
|
|
return preprocess_kwargs, {}, {} |
|
|
|
def preprocess(self, text, **kwargs): |
|
|
|
outputs = self.model.generate( |
|
**self.tokenizer([text], return_tensors="pt"), |
|
num_beams=5, |
|
num_return_sequences=5, |
|
max_new_tokens=30, |
|
) |
|
print(outputs) |
|
|
|
|
|
|
|
|
|
|
|
wikipedia_predictions = self.tokenizer.batch_decode( |
|
outputs, skip_special_tokens=True |
|
) |
|
|
|
|
|
return wikipedia_predictions, [0, 0, 0, 0, 0] |
|
|
|
def _forward(self, inputs): |
|
return inputs |
|
|
|
def postprocess(self, outputs, **kwargs): |
|
""" |
|
Postprocess the outputs of the model |
|
:param outputs: |
|
:param kwargs: |
|
:return: |
|
""" |
|
wikipedia_predictions, percentages = outputs |
|
results = [] |
|
for idx, wikipedia_name in enumerate(outputs): |
|
|
|
qid = get_wikipedia_page_props(wikipedia_name) |
|
|
|
|
|
|
|
title, url = get_wikipedia_title(qid) |
|
results.append( |
|
{"title": title, "qid": qid, "url": url, "score": percentages[idx]} |
|
) |
|
|
|
return results |
|
|