imsanjoykb commited on
Commit
86b228e
·
verified ·
1 Parent(s): f4815a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -18
README.md CHANGED
@@ -1,22 +1,77 @@
1
- ---
2
- base_model: unsloth/qwen2.5-coder-14b-instruct-bnb-4bit
3
- tags:
4
- - text-generation-inference
5
- - transformers
6
- - unsloth
7
- - qwen2
8
- - trl
9
- license: apache-2.0
10
- language:
11
- - en
12
- ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** imsanjoykb
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/qwen2.5-coder-14b-instruct-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [🤗 HF Repo](https://huggingface.co/imsanjoykb/sqlCoder-Qwen2.5-8bit) | [♾️ Colab](https://colab.research.google.com/drive/19e-u32GY2y5lsckNuWhBQExvXgVn8ZjG?usp=sharing)
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ Introducing the latest fine-tuned version of Qwen2.5-Coder-14B-Instruct, specifically tailored for SQL code generation. Built on the robust 14-billion parameter Qwen2.5-Coder architecture, this model leverages advanced configurations like bfloat16 precision and a custom quantization setup, optimized for efficient 4-bit computation. With a maximum context window of 32K tokens, this model supports extensive SQL sequences and complex query generation without compromising accuracy or performance.
4
 
5
+ Our fine-tuning process has enriched this model with domain-specific SQL patterns and nuanced query constructions, making it exceptionally adept at handling real-world SQL requirements, from query creation to debugging and optimization. By combining Qwen2.5's foundational strengths with targeted training on custom SQL data, this model achieves a powerful balance of general-purpose code understanding and SQL-specific precision, making it an ideal tool for developers and data engineers seeking top-tier SQL generation capabilities.
6
+
7
+
8
+ ## Inference
9
+
10
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
11
+
12
+ ```python
13
+ # Import necessary libraries
14
+ from unsloth import FastLanguageModel
15
+ import torch
16
+
17
+ # Define the model name and other parameters
18
+ model_name = "imsanjoykb/sqlCoder-Qwen2.5-8bit"
19
+ max_seq_length = 2048
20
+ dtype = None
21
+ load_in_4bit = True
22
+
23
+ # Load the model and tokenizer from Hugging Face
24
+ model, tokenizer = FastLanguageModel.from_pretrained(
25
+ model_name=model_name,
26
+ max_seq_length=max_seq_length,
27
+ dtype=dtype,
28
+ load_in_4bit=load_in_4bit,
29
+ )
30
+
31
+ # Enable faster inference
32
+ FastLanguageModel.for_inference(model)
33
+
34
+ # Define the prompt template
35
+ odoo_text2sql_prompt = """Below is an instruction describing a task related to generating a SQL query specifically for Odoo's database structure. The input provides relevant context about Odoo models or data fields from {db_schema}. Write a SQL query that fulfills the given task using Odoo's database schema.
36
 
37
+ ### Instruction:
38
+ Generate a SQL query in the context of Odoo to {}
39
 
40
+ ### Input:
41
+ {}
42
+
43
+ ### Response:
44
+ {}
45
+ """
46
+
47
+ # Optionally, use a TextStreamer for continuous inference
48
+ from transformers import TextStreamer
49
+
50
+ # Prepare the input text for continuous inference
51
+ instruction = ""
52
+ input_text = "What is the top profitable product?"
53
+ output_text = ""
54
+
55
+ # Tokenize the input text
56
+ inputs = tokenizer(
57
+ [
58
+ odoo_text2sql_prompt.format(instruction, input_text, output_text)
59
+ ],
60
+ return_tensors="pt"
61
+ ).to("cuda")
62
+
63
+ # Initialize the TextStreamer
64
+ text_streamer = TextStreamer(tokenizer)
65
+
66
+ # Generate the output using the model with TextStreamer
67
+ _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=350)
68
+ ```
69
+ ## Model Download
70
+ | **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** |
71
+ | :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
72
+ | sqlCoder-Qwen2.5-8bit | 14B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/imsanjoykb/sqlCoder-Qwen2.5-8bit) |
73
+
74
+ # Uploaded model
75
+
76
+ - **Developed by:** [Sanjoy Biswas](https://www.linkedin.com/in/imsanjoykb/)
77
+ - **License:** apache-2.0