File size: 5,541 Bytes
93fe023
 
 
1786851
93fe023
1786851
 
93fe023
 
 
 
 
 
1786851
42685f9
 
1786851
93fe023
 
25c0b70
93fe023
25c0b70
2f49806
93fe023
 
876c87d
93fe023
 
 
25c0b70
 
 
 
 
 
2f49806
 
 
 
 
 
 
 
25c0b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fe023
 
 
 
9a368ad
 
 
 
287938a
9a368ad
287938a
9a368ad
6dddf7b
93fe023
 
 
 
 
 
 
 
 
 
 
 
287938a
 
93fe023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287938a
 
93fe023
 
 
 
 
 
 
287938a
93fe023
 
 
 
 
 
 
 
 
287938a
93fe023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287938a
93fe023
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
language: id
datasets:
- mozilla-foundation/common_voice_7_0
- openslr
- magic_data
- titml
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- id
- jv
- su
- robust-speech-event
license: apache-2.0
model-index:
- name: Wav2Vec2 Indonesian Javanese and Sundanese
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 6.1
      type: common_voice
      args: id
    metrics:
    - name: Test WER
      type: wer
      value: 4.056
    - name: Test CER
      type: cer
      value: 1.472
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: id
    metrics:
    - name: Test WER
      type: wer
      value: 4.492
    - name: Test CER
      type: cer
      value: 1.577
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: id
    metrics:
    - name: Test WER
      type: wer
      value: 48.94
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: id
    metrics:
    - name: Test WER
      type: wer
      value: 68.95
---

# Multilingual Speech Recognition for Indonesian Languages

This is the model built for the project 
[Multilingual Speech Recognition for Indonesian Languages](https://github.com/indonesian-nlp/multilingual-asr).
It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice), 
[High-quality TTS data for Javanese - SLR41](https://huggingface.co/datasets/openslr), and
[High-quality TTS data for Sundanese - SLR44](https://huggingface.co/datasets/openslr) datasets.

We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/multilingual-asr) to test the model.

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "id", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```


## Evaluation

The model can be evaluated as follows on the Indonesian test data of Common Voice.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "id", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 11.57 %

## Training

The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ...  # TODO

The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) 
(will be available soon)