SamuelYang commited on
Commit
b3a1df9
·
verified ·
1 Parent(s): 4092e3e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Alibaba-NLP/gte-Qwen2-7B-instruct
4
+ language:
5
+ - en
6
+ - zh
7
+ ---
8
+ # INF-Retriever-v1
9
+ ## Model Overview
10
+ - **INF-Retriever-v1** is an LLM-based dense retrieval model developed by [INF TECH](https://www.infly.cn/en).
11
+ It is built upon the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model and specifically fine-tuned to excel in retrieval tasks, particularly for Chinese and English data.
12
+
13
+ - As of December 23, 2024, **INF-Retriever-v1** ranks **No.1** on the Automated Heterogeneous Information Retrieval Benchmark of version 24.04([AIR-Bench_24.04](https://huggingface.co/spaces/AIR-Bench/leaderboard)), showcasing its cutting-edge performance in heterogeneous information retrieval tasks.
14
+
15
+ ## Key Features
16
+
17
+ - **Optimized for Chinese and English retrieval**: The model has been specifically fine-tuned with retrieval-focused datasets in both languages, significantly improving its accuracy and efficiency for a variety of retrieval scenarios.
18
+
19
+ - **Top-tier performance**: **INF-Retriever-v1** has achieved outstanding results on the AIR-Bench leaderboard, making it a top choice for heterogeneous information retrieval tasks across various domains.
20
+
21
+ ## Usage
22
+
23
+ ### Transformers
24
+ ```python
25
+ import torch
26
+ import torch.nn.functional as F
27
+
28
+ from torch import Tensor
29
+ from transformers import AutoTokenizer, AutoModel
30
+
31
+
32
+ def last_token_pool(last_hidden_states: Tensor,
33
+ attention_mask: Tensor) -> Tensor:
34
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
35
+ if left_padding:
36
+ return last_hidden_states[:, -1]
37
+ else:
38
+ sequence_lengths = attention_mask.sum(dim=1) - 1
39
+ batch_size = last_hidden_states.shape[0]
40
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
41
+
42
+
43
+ def get_detailed_instruct(task_description: str, query: str) -> str:
44
+ return f'Instruct: {task_description}\nQuery: {query}'
45
+
46
+
47
+ # Each query must come with a one-sentence instruction that describes the task
48
+ task = 'Given a web search query, retrieve relevant passages that answer the query'
49
+ queries = [
50
+ get_detailed_instruct(task, 'how much protein should a female eat'),
51
+ get_detailed_instruct(task, 'summit define')
52
+ ]
53
+ # No need to add instruction for retrieval documents
54
+ documents = [
55
+ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
56
+ "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
57
+ ]
58
+ input_texts = queries + documents
59
+
60
+ tokenizer = AutoTokenizer.from_pretrained('infly/inf-retriever-v1', trust_remote_code=True)
61
+ model = AutoModel.from_pretrained('infly/inf-retriever-v1', trust_remote_code=True)
62
+
63
+ max_length = 8192
64
+
65
+ # Tokenize the input texts
66
+ batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
67
+ outputs = model(**batch_dict)
68
+ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
69
+
70
+ # normalize embeddings
71
+ embeddings = F.normalize(embeddings, p=2, dim=1)
72
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
73
+ print(scores.tolist())
74
+ ```
75
+
76
+ ## Evaluation
77
+
78
+ ### AIR-Bench
79
+
80
+ **INF-Retriever-v1** has demonstrated superior retrieval capabilities across multiple domains and languages. The results from the Automated Heterogeneous Information Retrieval Benchmark of version 24.04([AIR-Bench_24.04](https://huggingface.co/spaces/AIR-Bench/leaderboard)) as of December 23, 2024, are as follows:
81
+
82
+ | Model Name | Average | wiki_en | wiki_zh | web_en | web_zh | healthcare_en | healthcare_zh | law_en | arxiv_en | news_en | news_zh | finance_en | finance_zh | msmarco_en |
83
+ |:---------------------------------------------------------------------------------:|:---------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:-------------:|:---------:|:---------:|-----------|-----------|------------|------------|------------|
84
+ | [BGE-M3](https://huggingface.co/BAAI/bge-m3) | 46.65 | 60.49 | 62.36 | 47.35 | 50.38 | 49.1 | **42.38** | 26.68 | 40.76 | 48.04 | 40.75 | 51.52 | 32.18 | 54.4 |
85
+ | [BGE-Multilingual-Gemma2](https://huggingface.co/BAAI/bge-multilingual-gemma2) | 46.83 | 63.71 | 67.3 | 50.38 | 53.24 | 47.24 | 42.13 | 22.58 | 23.28 | 50.91 | 44.02 | 49.3 | 31.6 | **63.14** |
86
+ | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | 48.38 | 63.46 | 66.44 | 51.2 | 51.98 | 54.2 | 38.82 | 22.31 | 40.27 | **54.07** | 43.03 | 58.2 | 26.63 | 58.39 |
87
+ | **INF-Retriever-v1** | **52.56** | **65.25** | **68.44** | **52.13** | **56.6** | **56.96** | 42.03 | **34.51** | **50.62** | 53.32 | **50.02** | **58.34** | **35.42** | 59.64 |