instruction-pretrain
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -19,15 +19,17 @@ We explore supervised multitask pre-training by proposing ***Instruction Pre-Tra
|
|
19 |
</p>
|
20 |
|
21 |
**************************** **Updates** ****************************
|
|
|
22 |
* 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M! Below, we show the performance trend on downstream tasks throughout the pre-training process:
|
23 |
-
<p align='
|
24 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0okCfRkC6uALTfuNxt0Fa.png" width="
|
25 |
</p>
|
26 |
* 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
|
27 |
|
28 |
## Resources
|
29 |
-
**🤗 We share our data and models with example usages, feel free to open any
|
30 |
|
|
|
31 |
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
32 |
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
|
33 |
- General Models Pre-Trained from Scratch (on 100B tokes):
|
@@ -106,7 +108,7 @@ Instruction Pre-Training
|
|
106 |
}
|
107 |
```
|
108 |
|
109 |
-
[
|
110 |
```bibtex
|
111 |
@inproceedings{
|
112 |
cheng2024adapting,
|
|
|
19 |
</p>
|
20 |
|
21 |
**************************** **Updates** ****************************
|
22 |
+
* 2024/7/31: Updated pre-training suggestions in the `Advanced Usage` section of [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
23 |
* 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M! Below, we show the performance trend on downstream tasks throughout the pre-training process:
|
24 |
+
<p align='left'>
|
25 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0okCfRkC6uALTfuNxt0Fa.png" width="500">
|
26 |
</p>
|
27 |
* 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
|
28 |
|
29 |
## Resources
|
30 |
+
**🤗 We share our data and models with example usages, feel free to open any discussions at [this page](https://huggingface.co/papers/2406.14491)! 🤗**
|
31 |
|
32 |
+
- Thanks to the demo [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) for implementing our approach
|
33 |
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
34 |
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
|
35 |
- General Models Pre-Trained from Scratch (on 100B tokes):
|
|
|
108 |
}
|
109 |
```
|
110 |
|
111 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530)
|
112 |
```bibtex
|
113 |
@inproceedings{
|
114 |
cheng2024adapting,
|