|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch InternLM model.""" |
|
import math |
|
import queue |
|
import threading |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .configuration_internlm import InternLMConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "InternLMConfig" |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
(batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class InternLMRMSNorm(nn.Module): |
|
"""RMSNorm implemention.""" |
|
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternLMRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class InternLMRotaryEmbedding(torch.nn.Module): |
|
"""Implement InternLM's rotary embedding. |
|
|
|
Args: |
|
dim (int): Characteristic dimension of each self-attentional head. |
|
max_position_embeddings (int, optional): Model's training length. Defaults to 2048. |
|
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000. |
|
device (Any, optional): Running device. Defaults to None. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module): |
|
"""Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K. |
|
|
|
Args: |
|
dim (int): Characteristic dimension of each self-attentional head. |
|
max_position_embeddings (int, optional): Model's training length. Defaults to 2048. |
|
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000. |
|
device (Any, optional): Running device. Defaults to None. |
|
scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.dim = dim |
|
self.base = base |
|
self.scaling_factor = scaling_factor |
|
|
|
|
|
self.max_position_embeddings = max_position_embeddings |
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
|
|
def _update_cached(self, x, seq_len=None): |
|
self.max_seq_len_cached = max(seq_len, self.max_position_embeddings) |
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim)) |
|
else: |
|
inv_freq = self.inv_freq |
|
t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len <= self.max_position_embeddings: |
|
|
|
if self.max_seq_len_cached > self.max_position_embeddings: |
|
self._update_cached(x, seq_len) |
|
else: |
|
self._update_cached(x, seq_len) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) |
|
sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) |
|
if q.size(2) == 1: |
|
q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :]) |
|
else: |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
|
if k.size(2) == 1: |
|
k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :]) |
|
else: |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
|
return q_embed, k_embed |
|
|
|
|
|
class InternLMMLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class InternLMAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternLMConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) |
|
self.rotary_emb = self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = InternLMRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "dynamic": |
|
self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor |
|
) |
|
else: |
|
raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.") |
|
return self.rotary_emb |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = ( |
|
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
) |
|
value_states = ( |
|
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class InternLMDecoderLayer(nn.Module): |
|
def __init__(self, config: InternLMConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = InternLMAttention(config=config) |
|
self.mlp = InternLMMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
INTERNLM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`InternLMConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM Model outputting raw hidden-states without any specific head on top.", |
|
INTERNLM_START_DOCSTRING, |
|
) |
|
class InternLMPreTrainedModel(PreTrainedModel): |
|
config_class = InternLMConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["InternLMDecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, InternLMModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
INTERNLM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or |
|
when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM Model outputting raw hidden-states without any specific head on top.", |
|
INTERNLM_START_DOCSTRING, |
|
) |
|
class InternLMModel(InternLMPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`] |
|
Args: |
|
config: InternLMConfig |
|
""" |
|
|
|
_auto_class = "AutoModel" |
|
|
|
def __init__(self, config: InternLMConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class InternLMForCausalLM(InternLMPreTrainedModel): |
|
_auto_class = "AutoModelForCausalLM" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLMModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, InternLMForCausalLM |
|
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []): |
|
prompt = "" |
|
for record in history: |
|
prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n""" |
|
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:""" |
|
return tokenizer([prompt], return_tensors="pt") |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
inputs = self.build_inputs(tokenizer, query, history) |
|
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} |
|
outputs = self.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :] |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |
|
response = response.split("<eoa>")[0] |
|
history = history + [(query, response)] |
|
return response, history |
|
|
|
@torch.no_grad() |
|
def stream_chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
""" |
|
Return a generator in format: (response, history) |
|
Eg. |
|
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) |
|
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) |
|
""" |
|
if BaseStreamer is None: |
|
raise ModuleNotFoundError( |
|
"The version of `transformers` is too low. Please make sure " |
|
"that you have installed `transformers>=4.28.0`." |
|
) |
|
|
|
response_queue = queue.Queue(maxsize=20) |
|
|
|
class ChatStreamer(BaseStreamer): |
|
def __init__(self, tokenizer) -> None: |
|
super().__init__() |
|
self.tokenizer = tokenizer |
|
self.queue = response_queue |
|
self.query = query |
|
self.history = history |
|
self.response = "" |
|
self.received_inputs = False |
|
self.queue.put((self.response, history + [(self.query, self.response)])) |
|
|
|
def put(self, value): |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError("ChatStreamer only supports batch size 1") |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if not self.received_inputs: |
|
|
|
self.received_inputs = True |
|
return |
|
|
|
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True) |
|
if token.strip() != "<eoa>": |
|
self.response = self.response + token |
|
history = self.history + [(self.query, self.response)] |
|
self.queue.put((self.response, history)) |
|
|
|
def end(self): |
|
self.queue.put(None) |
|
|
|
def stream_producer(): |
|
return self.chat( |
|
tokenizer=tokenizer, |
|
query=query, |
|
streamer=ChatStreamer(tokenizer=tokenizer), |
|
history=history, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
|
|
def consumer(): |
|
producer = threading.Thread(target=stream_producer) |
|
producer.start() |
|
while True: |
|
res = response_queue.get() |
|
if res is None: |
|
return |
|
yield res |
|
|
|
return consumer() |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The InternLM Model transformer with a sequence classification head on top (linear layer). |
|
[`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
INTERNLM_START_DOCSTRING, |
|
) |
|
class InternLMForSequenceClassification(InternLMPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = InternLMModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|