File size: 2,086 Bytes
70349fe 438cb80 70349fe 438cb80 70349fe 438cb80 70349fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- EunsuKim/MATH
model-index:
- name: zephyr-7b-math-test-half
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-math-test-half
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the EunsuKim/MATH dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0186
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.969 | 1.0 | 3 | 1.2659 |
| 1.0058 | 2.0 | 6 | 0.7385 |
| 1.0058 | 3.0 | 9 | 0.4851 |
| 0.6526 | 4.0 | 12 | 0.3110 |
| 0.3241 | 5.0 | 15 | 0.1611 |
| 0.3241 | 6.0 | 18 | 0.0703 |
| 0.1058 | 7.0 | 21 | 0.0349 |
| 0.1058 | 8.0 | 24 | 0.0240 |
| 0.033 | 9.0 | 27 | 0.0196 |
| 0.0202 | 10.0 | 30 | 0.0186 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|