File size: 5,087 Bytes
aa9e7db
6003a5b
 
 
 
a5654fe
 
d796470
aa9e7db
4532653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d26ef
4532653
 
 
 
 
 
 
 
 
 
 
 
 
 
25d26ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4532653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d26ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
tags:
- Sentence Transformers
- sentence-similarity
- sentence-transformers
language:
- en
license: mit
---
# E5-base-unsupervised

**This model is similar to [e5-base](https://huggingface.co/intfloat/e5-base) but without supervised fine-tuning.**

[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022

This model has 12 layers and the embedding size is 768.

## Usage

Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.

```python
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]


# Each input text should start with "query: " or "passage: ".
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ['query: how much protein should a female eat',
               'query: summit define',
               "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
               "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."]

tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base-unsupervised')
model = AutoModel.from_pretrained('intfloat/e5-base-unsupervised')

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```

## Training Details

Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).

## Benchmark Evaluation

Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results 
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).

## Support for Sentence Transformers

Below is an example for usage with sentence_transformers.
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('intfloat/e5-base-unsupervised')
input_texts = [
    'query: how much protein should a female eat',
    'query: summit define',
    "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."
]
embeddings = model.encode(input_texts, normalize_embeddings=True)
```

Package requirements

`pip install sentence_transformers~=2.2.2`

Contributors: [michaelfeil](https://huggingface.co/michaelfeil)

## FAQ

**1. Do I need to add the prefix "query: " and "passage: " to input texts?**

Yes, this is how the model is trained, otherwise you will see a performance degradation.

Here are some rules of thumb:
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.

- Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.

- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering

**2. Why are my reproduced results slightly different from reported in the model card?**

Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.

## Citation

If you find our paper or models helpful, please consider cite as follows:

```
@article{wang2022text,
  title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
  author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
  journal={arXiv preprint arXiv:2212.03533},
  year={2022}
}
```

## Limitations

This model only works for English texts. Long texts will be truncated to at most 512 tokens.