intfloat commited on
Commit
f03e79c
·
1 Parent(s): e2c49a3

add model weights

Browse files
README.md ADDED
@@ -0,0 +1,2604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: e5-small
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 76.22388059701493
18
+ - type: ap
19
+ value: 40.27466219523129
20
+ - type: f1
21
+ value: 70.60533006025108
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 87.525775
33
+ - type: ap
34
+ value: 83.51063993897611
35
+ - type: f1
36
+ value: 87.49342736805572
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 42.611999999999995
48
+ - type: f1
49
+ value: 42.05088045932892
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 23.826
61
+ - type: map_at_10
62
+ value: 38.269
63
+ - type: map_at_100
64
+ value: 39.322
65
+ - type: map_at_1000
66
+ value: 39.344
67
+ - type: map_at_3
68
+ value: 33.428000000000004
69
+ - type: map_at_5
70
+ value: 36.063
71
+ - type: mrr_at_1
72
+ value: 24.253
73
+ - type: mrr_at_10
74
+ value: 38.425
75
+ - type: mrr_at_100
76
+ value: 39.478
77
+ - type: mrr_at_1000
78
+ value: 39.5
79
+ - type: mrr_at_3
80
+ value: 33.606
81
+ - type: mrr_at_5
82
+ value: 36.195
83
+ - type: ndcg_at_1
84
+ value: 23.826
85
+ - type: ndcg_at_10
86
+ value: 46.693
87
+ - type: ndcg_at_100
88
+ value: 51.469
89
+ - type: ndcg_at_1000
90
+ value: 52.002
91
+ - type: ndcg_at_3
92
+ value: 36.603
93
+ - type: ndcg_at_5
94
+ value: 41.365
95
+ - type: precision_at_1
96
+ value: 23.826
97
+ - type: precision_at_10
98
+ value: 7.383000000000001
99
+ - type: precision_at_100
100
+ value: 0.9530000000000001
101
+ - type: precision_at_1000
102
+ value: 0.099
103
+ - type: precision_at_3
104
+ value: 15.268
105
+ - type: precision_at_5
106
+ value: 11.479000000000001
107
+ - type: recall_at_1
108
+ value: 23.826
109
+ - type: recall_at_10
110
+ value: 73.82600000000001
111
+ - type: recall_at_100
112
+ value: 95.306
113
+ - type: recall_at_1000
114
+ value: 99.431
115
+ - type: recall_at_3
116
+ value: 45.804
117
+ - type: recall_at_5
118
+ value: 57.397
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 44.13995374767436
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 37.13950072624313
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 59.35843292105327
152
+ - type: mrr
153
+ value: 73.72312359846987
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 84.55140418324174
165
+ - type: cos_sim_spearman
166
+ value: 84.21637675860022
167
+ - type: euclidean_pearson
168
+ value: 81.26069614610006
169
+ - type: euclidean_spearman
170
+ value: 83.25069210421785
171
+ - type: manhattan_pearson
172
+ value: 80.17441422581014
173
+ - type: manhattan_spearman
174
+ value: 81.87596198487877
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 81.87337662337661
186
+ - type: f1
187
+ value: 81.76647866926402
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 35.80600542614507
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 31.86321613256603
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.054
221
+ - type: map_at_10
222
+ value: 40.699999999999996
223
+ - type: map_at_100
224
+ value: 41.818
225
+ - type: map_at_1000
226
+ value: 41.959999999999994
227
+ - type: map_at_3
228
+ value: 37.742
229
+ - type: map_at_5
230
+ value: 39.427
231
+ - type: mrr_at_1
232
+ value: 38.769999999999996
233
+ - type: mrr_at_10
234
+ value: 46.150000000000006
235
+ - type: mrr_at_100
236
+ value: 46.865
237
+ - type: mrr_at_1000
238
+ value: 46.925
239
+ - type: mrr_at_3
240
+ value: 43.705
241
+ - type: mrr_at_5
242
+ value: 45.214999999999996
243
+ - type: ndcg_at_1
244
+ value: 38.769999999999996
245
+ - type: ndcg_at_10
246
+ value: 45.778
247
+ - type: ndcg_at_100
248
+ value: 50.38
249
+ - type: ndcg_at_1000
250
+ value: 52.922999999999995
251
+ - type: ndcg_at_3
252
+ value: 41.597
253
+ - type: ndcg_at_5
254
+ value: 43.631
255
+ - type: precision_at_1
256
+ value: 38.769999999999996
257
+ - type: precision_at_10
258
+ value: 8.269
259
+ - type: precision_at_100
260
+ value: 1.278
261
+ - type: precision_at_1000
262
+ value: 0.178
263
+ - type: precision_at_3
264
+ value: 19.266
265
+ - type: precision_at_5
266
+ value: 13.705
267
+ - type: recall_at_1
268
+ value: 32.054
269
+ - type: recall_at_10
270
+ value: 54.947
271
+ - type: recall_at_100
272
+ value: 74.79599999999999
273
+ - type: recall_at_1000
274
+ value: 91.40899999999999
275
+ - type: recall_at_3
276
+ value: 42.431000000000004
277
+ - type: recall_at_5
278
+ value: 48.519
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 29.035
290
+ - type: map_at_10
291
+ value: 38.007000000000005
292
+ - type: map_at_100
293
+ value: 39.125
294
+ - type: map_at_1000
295
+ value: 39.251999999999995
296
+ - type: map_at_3
297
+ value: 35.77
298
+ - type: map_at_5
299
+ value: 37.057
300
+ - type: mrr_at_1
301
+ value: 36.497
302
+ - type: mrr_at_10
303
+ value: 44.077
304
+ - type: mrr_at_100
305
+ value: 44.743
306
+ - type: mrr_at_1000
307
+ value: 44.79
308
+ - type: mrr_at_3
309
+ value: 42.123
310
+ - type: mrr_at_5
311
+ value: 43.308
312
+ - type: ndcg_at_1
313
+ value: 36.497
314
+ - type: ndcg_at_10
315
+ value: 42.986000000000004
316
+ - type: ndcg_at_100
317
+ value: 47.323
318
+ - type: ndcg_at_1000
319
+ value: 49.624
320
+ - type: ndcg_at_3
321
+ value: 39.805
322
+ - type: ndcg_at_5
323
+ value: 41.286
324
+ - type: precision_at_1
325
+ value: 36.497
326
+ - type: precision_at_10
327
+ value: 7.8340000000000005
328
+ - type: precision_at_100
329
+ value: 1.269
330
+ - type: precision_at_1000
331
+ value: 0.178
332
+ - type: precision_at_3
333
+ value: 19.023
334
+ - type: precision_at_5
335
+ value: 13.248
336
+ - type: recall_at_1
337
+ value: 29.035
338
+ - type: recall_at_10
339
+ value: 51.06
340
+ - type: recall_at_100
341
+ value: 69.64099999999999
342
+ - type: recall_at_1000
343
+ value: 84.49
344
+ - type: recall_at_3
345
+ value: 41.333999999999996
346
+ - type: recall_at_5
347
+ value: 45.663
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 37.239
359
+ - type: map_at_10
360
+ value: 47.873
361
+ - type: map_at_100
362
+ value: 48.842999999999996
363
+ - type: map_at_1000
364
+ value: 48.913000000000004
365
+ - type: map_at_3
366
+ value: 45.050000000000004
367
+ - type: map_at_5
368
+ value: 46.498
369
+ - type: mrr_at_1
370
+ value: 42.508
371
+ - type: mrr_at_10
372
+ value: 51.44
373
+ - type: mrr_at_100
374
+ value: 52.087
375
+ - type: mrr_at_1000
376
+ value: 52.129999999999995
377
+ - type: mrr_at_3
378
+ value: 49.164
379
+ - type: mrr_at_5
380
+ value: 50.343
381
+ - type: ndcg_at_1
382
+ value: 42.508
383
+ - type: ndcg_at_10
384
+ value: 53.31399999999999
385
+ - type: ndcg_at_100
386
+ value: 57.245000000000005
387
+ - type: ndcg_at_1000
388
+ value: 58.794000000000004
389
+ - type: ndcg_at_3
390
+ value: 48.295
391
+ - type: ndcg_at_5
392
+ value: 50.415
393
+ - type: precision_at_1
394
+ value: 42.508
395
+ - type: precision_at_10
396
+ value: 8.458
397
+ - type: precision_at_100
398
+ value: 1.133
399
+ - type: precision_at_1000
400
+ value: 0.132
401
+ - type: precision_at_3
402
+ value: 21.191
403
+ - type: precision_at_5
404
+ value: 14.307
405
+ - type: recall_at_1
406
+ value: 37.239
407
+ - type: recall_at_10
408
+ value: 65.99000000000001
409
+ - type: recall_at_100
410
+ value: 82.99499999999999
411
+ - type: recall_at_1000
412
+ value: 94.128
413
+ - type: recall_at_3
414
+ value: 52.382
415
+ - type: recall_at_5
416
+ value: 57.648999999999994
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 23.039
428
+ - type: map_at_10
429
+ value: 29.694
430
+ - type: map_at_100
431
+ value: 30.587999999999997
432
+ - type: map_at_1000
433
+ value: 30.692999999999998
434
+ - type: map_at_3
435
+ value: 27.708
436
+ - type: map_at_5
437
+ value: 28.774
438
+ - type: mrr_at_1
439
+ value: 24.633
440
+ - type: mrr_at_10
441
+ value: 31.478
442
+ - type: mrr_at_100
443
+ value: 32.299
444
+ - type: mrr_at_1000
445
+ value: 32.381
446
+ - type: mrr_at_3
447
+ value: 29.435
448
+ - type: mrr_at_5
449
+ value: 30.446
450
+ - type: ndcg_at_1
451
+ value: 24.633
452
+ - type: ndcg_at_10
453
+ value: 33.697
454
+ - type: ndcg_at_100
455
+ value: 38.080000000000005
456
+ - type: ndcg_at_1000
457
+ value: 40.812
458
+ - type: ndcg_at_3
459
+ value: 29.654000000000003
460
+ - type: ndcg_at_5
461
+ value: 31.474000000000004
462
+ - type: precision_at_1
463
+ value: 24.633
464
+ - type: precision_at_10
465
+ value: 5.0729999999999995
466
+ - type: precision_at_100
467
+ value: 0.753
468
+ - type: precision_at_1000
469
+ value: 0.10300000000000001
470
+ - type: precision_at_3
471
+ value: 12.279
472
+ - type: precision_at_5
473
+ value: 8.452
474
+ - type: recall_at_1
475
+ value: 23.039
476
+ - type: recall_at_10
477
+ value: 44.275999999999996
478
+ - type: recall_at_100
479
+ value: 64.4
480
+ - type: recall_at_1000
481
+ value: 85.135
482
+ - type: recall_at_3
483
+ value: 33.394
484
+ - type: recall_at_5
485
+ value: 37.687
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 13.594999999999999
497
+ - type: map_at_10
498
+ value: 19.933999999999997
499
+ - type: map_at_100
500
+ value: 20.966
501
+ - type: map_at_1000
502
+ value: 21.087
503
+ - type: map_at_3
504
+ value: 17.749000000000002
505
+ - type: map_at_5
506
+ value: 19.156000000000002
507
+ - type: mrr_at_1
508
+ value: 17.662
509
+ - type: mrr_at_10
510
+ value: 24.407
511
+ - type: mrr_at_100
512
+ value: 25.385
513
+ - type: mrr_at_1000
514
+ value: 25.465
515
+ - type: mrr_at_3
516
+ value: 22.056
517
+ - type: mrr_at_5
518
+ value: 23.630000000000003
519
+ - type: ndcg_at_1
520
+ value: 17.662
521
+ - type: ndcg_at_10
522
+ value: 24.391
523
+ - type: ndcg_at_100
524
+ value: 29.681
525
+ - type: ndcg_at_1000
526
+ value: 32.923
527
+ - type: ndcg_at_3
528
+ value: 20.271
529
+ - type: ndcg_at_5
530
+ value: 22.621
531
+ - type: precision_at_1
532
+ value: 17.662
533
+ - type: precision_at_10
534
+ value: 4.44
535
+ - type: precision_at_100
536
+ value: 0.8200000000000001
537
+ - type: precision_at_1000
538
+ value: 0.125
539
+ - type: precision_at_3
540
+ value: 9.577
541
+ - type: precision_at_5
542
+ value: 7.313
543
+ - type: recall_at_1
544
+ value: 13.594999999999999
545
+ - type: recall_at_10
546
+ value: 33.976
547
+ - type: recall_at_100
548
+ value: 57.43000000000001
549
+ - type: recall_at_1000
550
+ value: 80.958
551
+ - type: recall_at_3
552
+ value: 22.897000000000002
553
+ - type: recall_at_5
554
+ value: 28.714000000000002
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 26.683
566
+ - type: map_at_10
567
+ value: 35.068
568
+ - type: map_at_100
569
+ value: 36.311
570
+ - type: map_at_1000
571
+ value: 36.436
572
+ - type: map_at_3
573
+ value: 32.371
574
+ - type: map_at_5
575
+ value: 33.761
576
+ - type: mrr_at_1
577
+ value: 32.435
578
+ - type: mrr_at_10
579
+ value: 40.721000000000004
580
+ - type: mrr_at_100
581
+ value: 41.535
582
+ - type: mrr_at_1000
583
+ value: 41.593
584
+ - type: mrr_at_3
585
+ value: 38.401999999999994
586
+ - type: mrr_at_5
587
+ value: 39.567
588
+ - type: ndcg_at_1
589
+ value: 32.435
590
+ - type: ndcg_at_10
591
+ value: 40.538000000000004
592
+ - type: ndcg_at_100
593
+ value: 45.963
594
+ - type: ndcg_at_1000
595
+ value: 48.400999999999996
596
+ - type: ndcg_at_3
597
+ value: 36.048
598
+ - type: ndcg_at_5
599
+ value: 37.899
600
+ - type: precision_at_1
601
+ value: 32.435
602
+ - type: precision_at_10
603
+ value: 7.1129999999999995
604
+ - type: precision_at_100
605
+ value: 1.162
606
+ - type: precision_at_1000
607
+ value: 0.156
608
+ - type: precision_at_3
609
+ value: 16.683
610
+ - type: precision_at_5
611
+ value: 11.684
612
+ - type: recall_at_1
613
+ value: 26.683
614
+ - type: recall_at_10
615
+ value: 51.517
616
+ - type: recall_at_100
617
+ value: 74.553
618
+ - type: recall_at_1000
619
+ value: 90.649
620
+ - type: recall_at_3
621
+ value: 38.495000000000005
622
+ - type: recall_at_5
623
+ value: 43.495
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 24.186
635
+ - type: map_at_10
636
+ value: 31.972
637
+ - type: map_at_100
638
+ value: 33.117000000000004
639
+ - type: map_at_1000
640
+ value: 33.243
641
+ - type: map_at_3
642
+ value: 29.423
643
+ - type: map_at_5
644
+ value: 30.847
645
+ - type: mrr_at_1
646
+ value: 29.794999999999998
647
+ - type: mrr_at_10
648
+ value: 36.767
649
+ - type: mrr_at_100
650
+ value: 37.645
651
+ - type: mrr_at_1000
652
+ value: 37.716
653
+ - type: mrr_at_3
654
+ value: 34.513
655
+ - type: mrr_at_5
656
+ value: 35.791000000000004
657
+ - type: ndcg_at_1
658
+ value: 29.794999999999998
659
+ - type: ndcg_at_10
660
+ value: 36.786
661
+ - type: ndcg_at_100
662
+ value: 41.94
663
+ - type: ndcg_at_1000
664
+ value: 44.830999999999996
665
+ - type: ndcg_at_3
666
+ value: 32.504
667
+ - type: ndcg_at_5
668
+ value: 34.404
669
+ - type: precision_at_1
670
+ value: 29.794999999999998
671
+ - type: precision_at_10
672
+ value: 6.518
673
+ - type: precision_at_100
674
+ value: 1.0659999999999998
675
+ - type: precision_at_1000
676
+ value: 0.149
677
+ - type: precision_at_3
678
+ value: 15.296999999999999
679
+ - type: precision_at_5
680
+ value: 10.731
681
+ - type: recall_at_1
682
+ value: 24.186
683
+ - type: recall_at_10
684
+ value: 46.617
685
+ - type: recall_at_100
686
+ value: 68.75
687
+ - type: recall_at_1000
688
+ value: 88.864
689
+ - type: recall_at_3
690
+ value: 34.199
691
+ - type: recall_at_5
692
+ value: 39.462
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 24.22083333333333
704
+ - type: map_at_10
705
+ value: 31.606666666666662
706
+ - type: map_at_100
707
+ value: 32.6195
708
+ - type: map_at_1000
709
+ value: 32.739999999999995
710
+ - type: map_at_3
711
+ value: 29.37825
712
+ - type: map_at_5
713
+ value: 30.596083333333336
714
+ - type: mrr_at_1
715
+ value: 28.607916666666668
716
+ - type: mrr_at_10
717
+ value: 35.54591666666666
718
+ - type: mrr_at_100
719
+ value: 36.33683333333333
720
+ - type: mrr_at_1000
721
+ value: 36.40624999999999
722
+ - type: mrr_at_3
723
+ value: 33.526250000000005
724
+ - type: mrr_at_5
725
+ value: 34.6605
726
+ - type: ndcg_at_1
727
+ value: 28.607916666666668
728
+ - type: ndcg_at_10
729
+ value: 36.07966666666667
730
+ - type: ndcg_at_100
731
+ value: 40.73308333333333
732
+ - type: ndcg_at_1000
733
+ value: 43.40666666666666
734
+ - type: ndcg_at_3
735
+ value: 32.23525
736
+ - type: ndcg_at_5
737
+ value: 33.97083333333333
738
+ - type: precision_at_1
739
+ value: 28.607916666666668
740
+ - type: precision_at_10
741
+ value: 6.120333333333335
742
+ - type: precision_at_100
743
+ value: 0.9921666666666668
744
+ - type: precision_at_1000
745
+ value: 0.14091666666666666
746
+ - type: precision_at_3
747
+ value: 14.54975
748
+ - type: precision_at_5
749
+ value: 10.153166666666667
750
+ - type: recall_at_1
751
+ value: 24.22083333333333
752
+ - type: recall_at_10
753
+ value: 45.49183333333334
754
+ - type: recall_at_100
755
+ value: 66.28133333333332
756
+ - type: recall_at_1000
757
+ value: 85.16541666666667
758
+ - type: recall_at_3
759
+ value: 34.6485
760
+ - type: recall_at_5
761
+ value: 39.229749999999996
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 21.842
773
+ - type: map_at_10
774
+ value: 27.573999999999998
775
+ - type: map_at_100
776
+ value: 28.410999999999998
777
+ - type: map_at_1000
778
+ value: 28.502
779
+ - type: map_at_3
780
+ value: 25.921
781
+ - type: map_at_5
782
+ value: 26.888
783
+ - type: mrr_at_1
784
+ value: 24.08
785
+ - type: mrr_at_10
786
+ value: 29.915999999999997
787
+ - type: mrr_at_100
788
+ value: 30.669
789
+ - type: mrr_at_1000
790
+ value: 30.746000000000002
791
+ - type: mrr_at_3
792
+ value: 28.349000000000004
793
+ - type: mrr_at_5
794
+ value: 29.246
795
+ - type: ndcg_at_1
796
+ value: 24.08
797
+ - type: ndcg_at_10
798
+ value: 30.898999999999997
799
+ - type: ndcg_at_100
800
+ value: 35.272999999999996
801
+ - type: ndcg_at_1000
802
+ value: 37.679
803
+ - type: ndcg_at_3
804
+ value: 27.881
805
+ - type: ndcg_at_5
806
+ value: 29.432000000000002
807
+ - type: precision_at_1
808
+ value: 24.08
809
+ - type: precision_at_10
810
+ value: 4.678
811
+ - type: precision_at_100
812
+ value: 0.744
813
+ - type: precision_at_1000
814
+ value: 0.10300000000000001
815
+ - type: precision_at_3
816
+ value: 11.860999999999999
817
+ - type: precision_at_5
818
+ value: 8.16
819
+ - type: recall_at_1
820
+ value: 21.842
821
+ - type: recall_at_10
822
+ value: 38.66
823
+ - type: recall_at_100
824
+ value: 59.169000000000004
825
+ - type: recall_at_1000
826
+ value: 76.887
827
+ - type: recall_at_3
828
+ value: 30.532999999999998
829
+ - type: recall_at_5
830
+ value: 34.354
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 17.145
842
+ - type: map_at_10
843
+ value: 22.729
844
+ - type: map_at_100
845
+ value: 23.574
846
+ - type: map_at_1000
847
+ value: 23.695
848
+ - type: map_at_3
849
+ value: 21.044
850
+ - type: map_at_5
851
+ value: 21.981
852
+ - type: mrr_at_1
853
+ value: 20.888
854
+ - type: mrr_at_10
855
+ value: 26.529000000000003
856
+ - type: mrr_at_100
857
+ value: 27.308
858
+ - type: mrr_at_1000
859
+ value: 27.389000000000003
860
+ - type: mrr_at_3
861
+ value: 24.868000000000002
862
+ - type: mrr_at_5
863
+ value: 25.825
864
+ - type: ndcg_at_1
865
+ value: 20.888
866
+ - type: ndcg_at_10
867
+ value: 26.457000000000004
868
+ - type: ndcg_at_100
869
+ value: 30.764000000000003
870
+ - type: ndcg_at_1000
871
+ value: 33.825
872
+ - type: ndcg_at_3
873
+ value: 23.483999999999998
874
+ - type: ndcg_at_5
875
+ value: 24.836
876
+ - type: precision_at_1
877
+ value: 20.888
878
+ - type: precision_at_10
879
+ value: 4.58
880
+ - type: precision_at_100
881
+ value: 0.784
882
+ - type: precision_at_1000
883
+ value: 0.121
884
+ - type: precision_at_3
885
+ value: 10.874
886
+ - type: precision_at_5
887
+ value: 7.639
888
+ - type: recall_at_1
889
+ value: 17.145
890
+ - type: recall_at_10
891
+ value: 33.938
892
+ - type: recall_at_100
893
+ value: 53.672
894
+ - type: recall_at_1000
895
+ value: 76.023
896
+ - type: recall_at_3
897
+ value: 25.363000000000003
898
+ - type: recall_at_5
899
+ value: 29.023
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 24.275
911
+ - type: map_at_10
912
+ value: 30.438
913
+ - type: map_at_100
914
+ value: 31.489
915
+ - type: map_at_1000
916
+ value: 31.601000000000003
917
+ - type: map_at_3
918
+ value: 28.647
919
+ - type: map_at_5
920
+ value: 29.660999999999998
921
+ - type: mrr_at_1
922
+ value: 28.077999999999996
923
+ - type: mrr_at_10
924
+ value: 34.098
925
+ - type: mrr_at_100
926
+ value: 35.025
927
+ - type: mrr_at_1000
928
+ value: 35.109
929
+ - type: mrr_at_3
930
+ value: 32.4
931
+ - type: mrr_at_5
932
+ value: 33.379999999999995
933
+ - type: ndcg_at_1
934
+ value: 28.077999999999996
935
+ - type: ndcg_at_10
936
+ value: 34.271
937
+ - type: ndcg_at_100
938
+ value: 39.352
939
+ - type: ndcg_at_1000
940
+ value: 42.199
941
+ - type: ndcg_at_3
942
+ value: 30.978
943
+ - type: ndcg_at_5
944
+ value: 32.498
945
+ - type: precision_at_1
946
+ value: 28.077999999999996
947
+ - type: precision_at_10
948
+ value: 5.345
949
+ - type: precision_at_100
950
+ value: 0.897
951
+ - type: precision_at_1000
952
+ value: 0.125
953
+ - type: precision_at_3
954
+ value: 13.526
955
+ - type: precision_at_5
956
+ value: 9.16
957
+ - type: recall_at_1
958
+ value: 24.275
959
+ - type: recall_at_10
960
+ value: 42.362
961
+ - type: recall_at_100
962
+ value: 64.461
963
+ - type: recall_at_1000
964
+ value: 84.981
965
+ - type: recall_at_3
966
+ value: 33.249
967
+ - type: recall_at_5
968
+ value: 37.214999999999996
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 22.358
980
+ - type: map_at_10
981
+ value: 30.062
982
+ - type: map_at_100
983
+ value: 31.189
984
+ - type: map_at_1000
985
+ value: 31.386999999999997
986
+ - type: map_at_3
987
+ value: 27.672
988
+ - type: map_at_5
989
+ value: 28.76
990
+ - type: mrr_at_1
991
+ value: 26.877000000000002
992
+ - type: mrr_at_10
993
+ value: 33.948
994
+ - type: mrr_at_100
995
+ value: 34.746
996
+ - type: mrr_at_1000
997
+ value: 34.816
998
+ - type: mrr_at_3
999
+ value: 31.884
1000
+ - type: mrr_at_5
1001
+ value: 33.001000000000005
1002
+ - type: ndcg_at_1
1003
+ value: 26.877000000000002
1004
+ - type: ndcg_at_10
1005
+ value: 34.977000000000004
1006
+ - type: ndcg_at_100
1007
+ value: 39.753
1008
+ - type: ndcg_at_1000
1009
+ value: 42.866
1010
+ - type: ndcg_at_3
1011
+ value: 30.956
1012
+ - type: ndcg_at_5
1013
+ value: 32.381
1014
+ - type: precision_at_1
1015
+ value: 26.877000000000002
1016
+ - type: precision_at_10
1017
+ value: 6.7
1018
+ - type: precision_at_100
1019
+ value: 1.287
1020
+ - type: precision_at_1000
1021
+ value: 0.215
1022
+ - type: precision_at_3
1023
+ value: 14.360999999999999
1024
+ - type: precision_at_5
1025
+ value: 10.119
1026
+ - type: recall_at_1
1027
+ value: 22.358
1028
+ - type: recall_at_10
1029
+ value: 44.183
1030
+ - type: recall_at_100
1031
+ value: 67.14
1032
+ - type: recall_at_1000
1033
+ value: 87.53999999999999
1034
+ - type: recall_at_3
1035
+ value: 32.79
1036
+ - type: recall_at_5
1037
+ value: 36.829
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 19.198999999999998
1049
+ - type: map_at_10
1050
+ value: 25.229000000000003
1051
+ - type: map_at_100
1052
+ value: 26.003
1053
+ - type: map_at_1000
1054
+ value: 26.111
1055
+ - type: map_at_3
1056
+ value: 23.442
1057
+ - type: map_at_5
1058
+ value: 24.343
1059
+ - type: mrr_at_1
1060
+ value: 21.072
1061
+ - type: mrr_at_10
1062
+ value: 27.02
1063
+ - type: mrr_at_100
1064
+ value: 27.735
1065
+ - type: mrr_at_1000
1066
+ value: 27.815
1067
+ - type: mrr_at_3
1068
+ value: 25.416
1069
+ - type: mrr_at_5
1070
+ value: 26.173999999999996
1071
+ - type: ndcg_at_1
1072
+ value: 21.072
1073
+ - type: ndcg_at_10
1074
+ value: 28.862
1075
+ - type: ndcg_at_100
1076
+ value: 33.043
1077
+ - type: ndcg_at_1000
1078
+ value: 36.003
1079
+ - type: ndcg_at_3
1080
+ value: 25.35
1081
+ - type: ndcg_at_5
1082
+ value: 26.773000000000003
1083
+ - type: precision_at_1
1084
+ value: 21.072
1085
+ - type: precision_at_10
1086
+ value: 4.436
1087
+ - type: precision_at_100
1088
+ value: 0.713
1089
+ - type: precision_at_1000
1090
+ value: 0.106
1091
+ - type: precision_at_3
1092
+ value: 10.659
1093
+ - type: precision_at_5
1094
+ value: 7.32
1095
+ - type: recall_at_1
1096
+ value: 19.198999999999998
1097
+ - type: recall_at_10
1098
+ value: 38.376
1099
+ - type: recall_at_100
1100
+ value: 58.36900000000001
1101
+ - type: recall_at_1000
1102
+ value: 80.92099999999999
1103
+ - type: recall_at_3
1104
+ value: 28.715000000000003
1105
+ - type: recall_at_5
1106
+ value: 32.147
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 5.9319999999999995
1118
+ - type: map_at_10
1119
+ value: 10.483
1120
+ - type: map_at_100
1121
+ value: 11.97
1122
+ - type: map_at_1000
1123
+ value: 12.171999999999999
1124
+ - type: map_at_3
1125
+ value: 8.477
1126
+ - type: map_at_5
1127
+ value: 9.495000000000001
1128
+ - type: mrr_at_1
1129
+ value: 13.094
1130
+ - type: mrr_at_10
1131
+ value: 21.282
1132
+ - type: mrr_at_100
1133
+ value: 22.556
1134
+ - type: mrr_at_1000
1135
+ value: 22.628999999999998
1136
+ - type: mrr_at_3
1137
+ value: 18.218999999999998
1138
+ - type: mrr_at_5
1139
+ value: 19.900000000000002
1140
+ - type: ndcg_at_1
1141
+ value: 13.094
1142
+ - type: ndcg_at_10
1143
+ value: 15.811
1144
+ - type: ndcg_at_100
1145
+ value: 23.035
1146
+ - type: ndcg_at_1000
1147
+ value: 27.089999999999996
1148
+ - type: ndcg_at_3
1149
+ value: 11.905000000000001
1150
+ - type: ndcg_at_5
1151
+ value: 13.377
1152
+ - type: precision_at_1
1153
+ value: 13.094
1154
+ - type: precision_at_10
1155
+ value: 5.225
1156
+ - type: precision_at_100
1157
+ value: 1.2970000000000002
1158
+ - type: precision_at_1000
1159
+ value: 0.203
1160
+ - type: precision_at_3
1161
+ value: 8.86
1162
+ - type: precision_at_5
1163
+ value: 7.309
1164
+ - type: recall_at_1
1165
+ value: 5.9319999999999995
1166
+ - type: recall_at_10
1167
+ value: 20.305
1168
+ - type: recall_at_100
1169
+ value: 46.314
1170
+ - type: recall_at_1000
1171
+ value: 69.612
1172
+ - type: recall_at_3
1173
+ value: 11.21
1174
+ - type: recall_at_5
1175
+ value: 14.773
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 8.674
1187
+ - type: map_at_10
1188
+ value: 17.822
1189
+ - type: map_at_100
1190
+ value: 24.794
1191
+ - type: map_at_1000
1192
+ value: 26.214
1193
+ - type: map_at_3
1194
+ value: 12.690999999999999
1195
+ - type: map_at_5
1196
+ value: 15.033
1197
+ - type: mrr_at_1
1198
+ value: 61.75000000000001
1199
+ - type: mrr_at_10
1200
+ value: 71.58
1201
+ - type: mrr_at_100
1202
+ value: 71.923
1203
+ - type: mrr_at_1000
1204
+ value: 71.932
1205
+ - type: mrr_at_3
1206
+ value: 70.125
1207
+ - type: mrr_at_5
1208
+ value: 71.038
1209
+ - type: ndcg_at_1
1210
+ value: 51.0
1211
+ - type: ndcg_at_10
1212
+ value: 38.637
1213
+ - type: ndcg_at_100
1214
+ value: 42.398
1215
+ - type: ndcg_at_1000
1216
+ value: 48.962
1217
+ - type: ndcg_at_3
1218
+ value: 43.29
1219
+ - type: ndcg_at_5
1220
+ value: 40.763
1221
+ - type: precision_at_1
1222
+ value: 61.75000000000001
1223
+ - type: precision_at_10
1224
+ value: 30.125
1225
+ - type: precision_at_100
1226
+ value: 9.53
1227
+ - type: precision_at_1000
1228
+ value: 1.9619999999999997
1229
+ - type: precision_at_3
1230
+ value: 45.583
1231
+ - type: precision_at_5
1232
+ value: 38.95
1233
+ - type: recall_at_1
1234
+ value: 8.674
1235
+ - type: recall_at_10
1236
+ value: 23.122
1237
+ - type: recall_at_100
1238
+ value: 47.46
1239
+ - type: recall_at_1000
1240
+ value: 67.662
1241
+ - type: recall_at_3
1242
+ value: 13.946
1243
+ - type: recall_at_5
1244
+ value: 17.768
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 46.86000000000001
1256
+ - type: f1
1257
+ value: 41.343580452760776
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 36.609
1269
+ - type: map_at_10
1270
+ value: 47.552
1271
+ - type: map_at_100
1272
+ value: 48.283
1273
+ - type: map_at_1000
1274
+ value: 48.321
1275
+ - type: map_at_3
1276
+ value: 44.869
1277
+ - type: map_at_5
1278
+ value: 46.509
1279
+ - type: mrr_at_1
1280
+ value: 39.214
1281
+ - type: mrr_at_10
1282
+ value: 50.434999999999995
1283
+ - type: mrr_at_100
1284
+ value: 51.122
1285
+ - type: mrr_at_1000
1286
+ value: 51.151
1287
+ - type: mrr_at_3
1288
+ value: 47.735
1289
+ - type: mrr_at_5
1290
+ value: 49.394
1291
+ - type: ndcg_at_1
1292
+ value: 39.214
1293
+ - type: ndcg_at_10
1294
+ value: 53.52400000000001
1295
+ - type: ndcg_at_100
1296
+ value: 56.997
1297
+ - type: ndcg_at_1000
1298
+ value: 57.975
1299
+ - type: ndcg_at_3
1300
+ value: 48.173
1301
+ - type: ndcg_at_5
1302
+ value: 51.05800000000001
1303
+ - type: precision_at_1
1304
+ value: 39.214
1305
+ - type: precision_at_10
1306
+ value: 7.573
1307
+ - type: precision_at_100
1308
+ value: 0.9440000000000001
1309
+ - type: precision_at_1000
1310
+ value: 0.104
1311
+ - type: precision_at_3
1312
+ value: 19.782
1313
+ - type: precision_at_5
1314
+ value: 13.453000000000001
1315
+ - type: recall_at_1
1316
+ value: 36.609
1317
+ - type: recall_at_10
1318
+ value: 69.247
1319
+ - type: recall_at_100
1320
+ value: 84.99600000000001
1321
+ - type: recall_at_1000
1322
+ value: 92.40899999999999
1323
+ - type: recall_at_3
1324
+ value: 54.856
1325
+ - type: recall_at_5
1326
+ value: 61.797000000000004
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 16.466
1338
+ - type: map_at_10
1339
+ value: 27.060000000000002
1340
+ - type: map_at_100
1341
+ value: 28.511999999999997
1342
+ - type: map_at_1000
1343
+ value: 28.693
1344
+ - type: map_at_3
1345
+ value: 22.777
1346
+ - type: map_at_5
1347
+ value: 25.086000000000002
1348
+ - type: mrr_at_1
1349
+ value: 32.716
1350
+ - type: mrr_at_10
1351
+ value: 41.593999999999994
1352
+ - type: mrr_at_100
1353
+ value: 42.370000000000005
1354
+ - type: mrr_at_1000
1355
+ value: 42.419000000000004
1356
+ - type: mrr_at_3
1357
+ value: 38.143
1358
+ - type: mrr_at_5
1359
+ value: 40.288000000000004
1360
+ - type: ndcg_at_1
1361
+ value: 32.716
1362
+ - type: ndcg_at_10
1363
+ value: 34.795
1364
+ - type: ndcg_at_100
1365
+ value: 40.58
1366
+ - type: ndcg_at_1000
1367
+ value: 43.993
1368
+ - type: ndcg_at_3
1369
+ value: 29.573
1370
+ - type: ndcg_at_5
1371
+ value: 31.583
1372
+ - type: precision_at_1
1373
+ value: 32.716
1374
+ - type: precision_at_10
1375
+ value: 9.937999999999999
1376
+ - type: precision_at_100
1377
+ value: 1.585
1378
+ - type: precision_at_1000
1379
+ value: 0.22
1380
+ - type: precision_at_3
1381
+ value: 19.496
1382
+ - type: precision_at_5
1383
+ value: 15.247
1384
+ - type: recall_at_1
1385
+ value: 16.466
1386
+ - type: recall_at_10
1387
+ value: 42.886
1388
+ - type: recall_at_100
1389
+ value: 64.724
1390
+ - type: recall_at_1000
1391
+ value: 85.347
1392
+ - type: recall_at_3
1393
+ value: 26.765
1394
+ - type: recall_at_5
1395
+ value: 33.603
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 33.025
1407
+ - type: map_at_10
1408
+ value: 47.343
1409
+ - type: map_at_100
1410
+ value: 48.207
1411
+ - type: map_at_1000
1412
+ value: 48.281
1413
+ - type: map_at_3
1414
+ value: 44.519
1415
+ - type: map_at_5
1416
+ value: 46.217000000000006
1417
+ - type: mrr_at_1
1418
+ value: 66.05
1419
+ - type: mrr_at_10
1420
+ value: 72.94699999999999
1421
+ - type: mrr_at_100
1422
+ value: 73.289
1423
+ - type: mrr_at_1000
1424
+ value: 73.30499999999999
1425
+ - type: mrr_at_3
1426
+ value: 71.686
1427
+ - type: mrr_at_5
1428
+ value: 72.491
1429
+ - type: ndcg_at_1
1430
+ value: 66.05
1431
+ - type: ndcg_at_10
1432
+ value: 56.338
1433
+ - type: ndcg_at_100
1434
+ value: 59.599999999999994
1435
+ - type: ndcg_at_1000
1436
+ value: 61.138000000000005
1437
+ - type: ndcg_at_3
1438
+ value: 52.034000000000006
1439
+ - type: ndcg_at_5
1440
+ value: 54.352000000000004
1441
+ - type: precision_at_1
1442
+ value: 66.05
1443
+ - type: precision_at_10
1444
+ value: 11.693000000000001
1445
+ - type: precision_at_100
1446
+ value: 1.425
1447
+ - type: precision_at_1000
1448
+ value: 0.163
1449
+ - type: precision_at_3
1450
+ value: 32.613
1451
+ - type: precision_at_5
1452
+ value: 21.401999999999997
1453
+ - type: recall_at_1
1454
+ value: 33.025
1455
+ - type: recall_at_10
1456
+ value: 58.467
1457
+ - type: recall_at_100
1458
+ value: 71.242
1459
+ - type: recall_at_1000
1460
+ value: 81.452
1461
+ - type: recall_at_3
1462
+ value: 48.92
1463
+ - type: recall_at_5
1464
+ value: 53.504
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 75.5492
1476
+ - type: ap
1477
+ value: 69.42911637216271
1478
+ - type: f1
1479
+ value: 75.39113704261024
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 23.173
1491
+ - type: map_at_10
1492
+ value: 35.453
1493
+ - type: map_at_100
1494
+ value: 36.573
1495
+ - type: map_at_1000
1496
+ value: 36.620999999999995
1497
+ - type: map_at_3
1498
+ value: 31.655
1499
+ - type: map_at_5
1500
+ value: 33.823
1501
+ - type: mrr_at_1
1502
+ value: 23.868000000000002
1503
+ - type: mrr_at_10
1504
+ value: 36.085
1505
+ - type: mrr_at_100
1506
+ value: 37.15
1507
+ - type: mrr_at_1000
1508
+ value: 37.193
1509
+ - type: mrr_at_3
1510
+ value: 32.376
1511
+ - type: mrr_at_5
1512
+ value: 34.501
1513
+ - type: ndcg_at_1
1514
+ value: 23.854
1515
+ - type: ndcg_at_10
1516
+ value: 42.33
1517
+ - type: ndcg_at_100
1518
+ value: 47.705999999999996
1519
+ - type: ndcg_at_1000
1520
+ value: 48.91
1521
+ - type: ndcg_at_3
1522
+ value: 34.604
1523
+ - type: ndcg_at_5
1524
+ value: 38.473
1525
+ - type: precision_at_1
1526
+ value: 23.854
1527
+ - type: precision_at_10
1528
+ value: 6.639
1529
+ - type: precision_at_100
1530
+ value: 0.932
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 14.685
1535
+ - type: precision_at_5
1536
+ value: 10.782
1537
+ - type: recall_at_1
1538
+ value: 23.173
1539
+ - type: recall_at_10
1540
+ value: 63.441
1541
+ - type: recall_at_100
1542
+ value: 88.25
1543
+ - type: recall_at_1000
1544
+ value: 97.438
1545
+ - type: recall_at_3
1546
+ value: 42.434
1547
+ - type: recall_at_5
1548
+ value: 51.745
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 92.05426356589147
1560
+ - type: f1
1561
+ value: 91.88068588063942
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 73.23985408116735
1573
+ - type: f1
1574
+ value: 55.858906745287506
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 72.21923335574984
1586
+ - type: f1
1587
+ value: 70.0174116204253
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 75.77673167451245
1599
+ - type: f1
1600
+ value: 75.44811354778666
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 31.340414710728737
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 28.196676760061578
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 29.564149683482206
1634
+ - type: mrr
1635
+ value: 30.28995474250486
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 5.93
1647
+ - type: map_at_10
1648
+ value: 12.828000000000001
1649
+ - type: map_at_100
1650
+ value: 15.501000000000001
1651
+ - type: map_at_1000
1652
+ value: 16.791
1653
+ - type: map_at_3
1654
+ value: 9.727
1655
+ - type: map_at_5
1656
+ value: 11.318999999999999
1657
+ - type: mrr_at_1
1658
+ value: 47.678
1659
+ - type: mrr_at_10
1660
+ value: 55.893
1661
+ - type: mrr_at_100
1662
+ value: 56.491
1663
+ - type: mrr_at_1000
1664
+ value: 56.53
1665
+ - type: mrr_at_3
1666
+ value: 54.386
1667
+ - type: mrr_at_5
1668
+ value: 55.516
1669
+ - type: ndcg_at_1
1670
+ value: 45.975
1671
+ - type: ndcg_at_10
1672
+ value: 33.928999999999995
1673
+ - type: ndcg_at_100
1674
+ value: 30.164
1675
+ - type: ndcg_at_1000
1676
+ value: 38.756
1677
+ - type: ndcg_at_3
1678
+ value: 41.077000000000005
1679
+ - type: ndcg_at_5
1680
+ value: 38.415
1681
+ - type: precision_at_1
1682
+ value: 47.678
1683
+ - type: precision_at_10
1684
+ value: 24.365000000000002
1685
+ - type: precision_at_100
1686
+ value: 7.344
1687
+ - type: precision_at_1000
1688
+ value: 1.994
1689
+ - type: precision_at_3
1690
+ value: 38.184000000000005
1691
+ - type: precision_at_5
1692
+ value: 33.003
1693
+ - type: recall_at_1
1694
+ value: 5.93
1695
+ - type: recall_at_10
1696
+ value: 16.239
1697
+ - type: recall_at_100
1698
+ value: 28.782999999999998
1699
+ - type: recall_at_1000
1700
+ value: 60.11
1701
+ - type: recall_at_3
1702
+ value: 10.700999999999999
1703
+ - type: recall_at_5
1704
+ value: 13.584
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 36.163000000000004
1716
+ - type: map_at_10
1717
+ value: 51.520999999999994
1718
+ - type: map_at_100
1719
+ value: 52.449
1720
+ - type: map_at_1000
1721
+ value: 52.473000000000006
1722
+ - type: map_at_3
1723
+ value: 47.666
1724
+ - type: map_at_5
1725
+ value: 50.043000000000006
1726
+ - type: mrr_at_1
1727
+ value: 40.266999999999996
1728
+ - type: mrr_at_10
1729
+ value: 54.074
1730
+ - type: mrr_at_100
1731
+ value: 54.722
1732
+ - type: mrr_at_1000
1733
+ value: 54.739000000000004
1734
+ - type: mrr_at_3
1735
+ value: 51.043000000000006
1736
+ - type: mrr_at_5
1737
+ value: 52.956
1738
+ - type: ndcg_at_1
1739
+ value: 40.238
1740
+ - type: ndcg_at_10
1741
+ value: 58.73199999999999
1742
+ - type: ndcg_at_100
1743
+ value: 62.470000000000006
1744
+ - type: ndcg_at_1000
1745
+ value: 63.083999999999996
1746
+ - type: ndcg_at_3
1747
+ value: 51.672
1748
+ - type: ndcg_at_5
1749
+ value: 55.564
1750
+ - type: precision_at_1
1751
+ value: 40.238
1752
+ - type: precision_at_10
1753
+ value: 9.279
1754
+ - type: precision_at_100
1755
+ value: 1.139
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 23.078000000000003
1760
+ - type: precision_at_5
1761
+ value: 16.176
1762
+ - type: recall_at_1
1763
+ value: 36.163000000000004
1764
+ - type: recall_at_10
1765
+ value: 77.88199999999999
1766
+ - type: recall_at_100
1767
+ value: 93.83399999999999
1768
+ - type: recall_at_1000
1769
+ value: 98.465
1770
+ - type: recall_at_3
1771
+ value: 59.857000000000006
1772
+ - type: recall_at_5
1773
+ value: 68.73599999999999
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 70.344
1785
+ - type: map_at_10
1786
+ value: 83.907
1787
+ - type: map_at_100
1788
+ value: 84.536
1789
+ - type: map_at_1000
1790
+ value: 84.557
1791
+ - type: map_at_3
1792
+ value: 80.984
1793
+ - type: map_at_5
1794
+ value: 82.844
1795
+ - type: mrr_at_1
1796
+ value: 81.02000000000001
1797
+ - type: mrr_at_10
1798
+ value: 87.158
1799
+ - type: mrr_at_100
1800
+ value: 87.268
1801
+ - type: mrr_at_1000
1802
+ value: 87.26899999999999
1803
+ - type: mrr_at_3
1804
+ value: 86.17
1805
+ - type: mrr_at_5
1806
+ value: 86.87
1807
+ - type: ndcg_at_1
1808
+ value: 81.02000000000001
1809
+ - type: ndcg_at_10
1810
+ value: 87.70700000000001
1811
+ - type: ndcg_at_100
1812
+ value: 89.004
1813
+ - type: ndcg_at_1000
1814
+ value: 89.139
1815
+ - type: ndcg_at_3
1816
+ value: 84.841
1817
+ - type: ndcg_at_5
1818
+ value: 86.455
1819
+ - type: precision_at_1
1820
+ value: 81.02000000000001
1821
+ - type: precision_at_10
1822
+ value: 13.248999999999999
1823
+ - type: precision_at_100
1824
+ value: 1.516
1825
+ - type: precision_at_1000
1826
+ value: 0.156
1827
+ - type: precision_at_3
1828
+ value: 36.963
1829
+ - type: precision_at_5
1830
+ value: 24.33
1831
+ - type: recall_at_1
1832
+ value: 70.344
1833
+ - type: recall_at_10
1834
+ value: 94.75099999999999
1835
+ - type: recall_at_100
1836
+ value: 99.30499999999999
1837
+ - type: recall_at_1000
1838
+ value: 99.928
1839
+ - type: recall_at_3
1840
+ value: 86.506
1841
+ - type: recall_at_5
1842
+ value: 91.083
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 42.873718018378305
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 56.39477366450528
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 3.868
1876
+ - type: map_at_10
1877
+ value: 9.611
1878
+ - type: map_at_100
1879
+ value: 11.087
1880
+ - type: map_at_1000
1881
+ value: 11.332
1882
+ - type: map_at_3
1883
+ value: 6.813
1884
+ - type: map_at_5
1885
+ value: 8.233
1886
+ - type: mrr_at_1
1887
+ value: 19.0
1888
+ - type: mrr_at_10
1889
+ value: 28.457
1890
+ - type: mrr_at_100
1891
+ value: 29.613
1892
+ - type: mrr_at_1000
1893
+ value: 29.695
1894
+ - type: mrr_at_3
1895
+ value: 25.55
1896
+ - type: mrr_at_5
1897
+ value: 27.29
1898
+ - type: ndcg_at_1
1899
+ value: 19.0
1900
+ - type: ndcg_at_10
1901
+ value: 16.419
1902
+ - type: ndcg_at_100
1903
+ value: 22.817999999999998
1904
+ - type: ndcg_at_1000
1905
+ value: 27.72
1906
+ - type: ndcg_at_3
1907
+ value: 15.379000000000001
1908
+ - type: ndcg_at_5
1909
+ value: 13.645
1910
+ - type: precision_at_1
1911
+ value: 19.0
1912
+ - type: precision_at_10
1913
+ value: 8.540000000000001
1914
+ - type: precision_at_100
1915
+ value: 1.7819999999999998
1916
+ - type: precision_at_1000
1917
+ value: 0.297
1918
+ - type: precision_at_3
1919
+ value: 14.267
1920
+ - type: precision_at_5
1921
+ value: 12.04
1922
+ - type: recall_at_1
1923
+ value: 3.868
1924
+ - type: recall_at_10
1925
+ value: 17.288
1926
+ - type: recall_at_100
1927
+ value: 36.144999999999996
1928
+ - type: recall_at_1000
1929
+ value: 60.199999999999996
1930
+ - type: recall_at_3
1931
+ value: 8.688
1932
+ - type: recall_at_5
1933
+ value: 12.198
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 83.96614722598582
1945
+ - type: cos_sim_spearman
1946
+ value: 78.9003023008781
1947
+ - type: euclidean_pearson
1948
+ value: 81.01829384436505
1949
+ - type: euclidean_spearman
1950
+ value: 78.93248416788914
1951
+ - type: manhattan_pearson
1952
+ value: 81.1665428926402
1953
+ - type: manhattan_spearman
1954
+ value: 78.93264116287453
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 83.54613363895993
1966
+ - type: cos_sim_spearman
1967
+ value: 75.1883451602451
1968
+ - type: euclidean_pearson
1969
+ value: 79.70320886899894
1970
+ - type: euclidean_spearman
1971
+ value: 74.5917140136796
1972
+ - type: manhattan_pearson
1973
+ value: 79.82157067185999
1974
+ - type: manhattan_spearman
1975
+ value: 74.74185720594735
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 81.30430156721782
1987
+ - type: cos_sim_spearman
1988
+ value: 81.79962989974364
1989
+ - type: euclidean_pearson
1990
+ value: 80.89058823224924
1991
+ - type: euclidean_spearman
1992
+ value: 81.35929372984597
1993
+ - type: manhattan_pearson
1994
+ value: 81.12204370487478
1995
+ - type: manhattan_spearman
1996
+ value: 81.6248963282232
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 81.13064504403134
2008
+ - type: cos_sim_spearman
2009
+ value: 78.48371403924872
2010
+ - type: euclidean_pearson
2011
+ value: 80.16794919665591
2012
+ - type: euclidean_spearman
2013
+ value: 78.29216082221699
2014
+ - type: manhattan_pearson
2015
+ value: 80.22308565207301
2016
+ - type: manhattan_spearman
2017
+ value: 78.37829229948022
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 86.52918899541099
2029
+ - type: cos_sim_spearman
2030
+ value: 87.49276894673142
2031
+ - type: euclidean_pearson
2032
+ value: 86.77440570164254
2033
+ - type: euclidean_spearman
2034
+ value: 87.5753295736756
2035
+ - type: manhattan_pearson
2036
+ value: 86.86098573892133
2037
+ - type: manhattan_spearman
2038
+ value: 87.65848591821947
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 82.86805307244882
2050
+ - type: cos_sim_spearman
2051
+ value: 84.58066253757511
2052
+ - type: euclidean_pearson
2053
+ value: 84.38377000876991
2054
+ - type: euclidean_spearman
2055
+ value: 85.1837278784528
2056
+ - type: manhattan_pearson
2057
+ value: 84.41903291363842
2058
+ - type: manhattan_spearman
2059
+ value: 85.19023736251052
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 86.77218560282436
2071
+ - type: cos_sim_spearman
2072
+ value: 87.94243515296604
2073
+ - type: euclidean_pearson
2074
+ value: 88.22800939214864
2075
+ - type: euclidean_spearman
2076
+ value: 87.91106839439841
2077
+ - type: manhattan_pearson
2078
+ value: 88.17063269848741
2079
+ - type: manhattan_spearman
2080
+ value: 87.72751904126062
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 60.40731554300387
2092
+ - type: cos_sim_spearman
2093
+ value: 63.76300532966479
2094
+ - type: euclidean_pearson
2095
+ value: 62.94727878229085
2096
+ - type: euclidean_spearman
2097
+ value: 63.678039531461216
2098
+ - type: manhattan_pearson
2099
+ value: 63.00661039863549
2100
+ - type: manhattan_spearman
2101
+ value: 63.6282591984376
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 84.92731569745344
2113
+ - type: cos_sim_spearman
2114
+ value: 86.36336704300167
2115
+ - type: euclidean_pearson
2116
+ value: 86.09122224841195
2117
+ - type: euclidean_spearman
2118
+ value: 86.2116149319238
2119
+ - type: manhattan_pearson
2120
+ value: 86.07879456717032
2121
+ - type: manhattan_spearman
2122
+ value: 86.2022069635119
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 79.75976311752326
2134
+ - type: mrr
2135
+ value: 94.15782837351466
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 51.193999999999996
2147
+ - type: map_at_10
2148
+ value: 61.224999999999994
2149
+ - type: map_at_100
2150
+ value: 62.031000000000006
2151
+ - type: map_at_1000
2152
+ value: 62.066
2153
+ - type: map_at_3
2154
+ value: 59.269000000000005
2155
+ - type: map_at_5
2156
+ value: 60.159
2157
+ - type: mrr_at_1
2158
+ value: 53.667
2159
+ - type: mrr_at_10
2160
+ value: 62.74999999999999
2161
+ - type: mrr_at_100
2162
+ value: 63.39399999999999
2163
+ - type: mrr_at_1000
2164
+ value: 63.425
2165
+ - type: mrr_at_3
2166
+ value: 61.389
2167
+ - type: mrr_at_5
2168
+ value: 61.989000000000004
2169
+ - type: ndcg_at_1
2170
+ value: 53.667
2171
+ - type: ndcg_at_10
2172
+ value: 65.596
2173
+ - type: ndcg_at_100
2174
+ value: 68.906
2175
+ - type: ndcg_at_1000
2176
+ value: 69.78999999999999
2177
+ - type: ndcg_at_3
2178
+ value: 62.261
2179
+ - type: ndcg_at_5
2180
+ value: 63.453
2181
+ - type: precision_at_1
2182
+ value: 53.667
2183
+ - type: precision_at_10
2184
+ value: 8.667
2185
+ - type: precision_at_100
2186
+ value: 1.04
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 24.556
2191
+ - type: precision_at_5
2192
+ value: 15.6
2193
+ - type: recall_at_1
2194
+ value: 51.193999999999996
2195
+ - type: recall_at_10
2196
+ value: 77.156
2197
+ - type: recall_at_100
2198
+ value: 91.43299999999999
2199
+ - type: recall_at_1000
2200
+ value: 98.333
2201
+ - type: recall_at_3
2202
+ value: 67.994
2203
+ - type: recall_at_5
2204
+ value: 71.14399999999999
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.81485148514851
2216
+ - type: cos_sim_ap
2217
+ value: 95.28896513388551
2218
+ - type: cos_sim_f1
2219
+ value: 90.43478260869566
2220
+ - type: cos_sim_precision
2221
+ value: 92.56544502617801
2222
+ - type: cos_sim_recall
2223
+ value: 88.4
2224
+ - type: dot_accuracy
2225
+ value: 99.30594059405941
2226
+ - type: dot_ap
2227
+ value: 61.6432597455472
2228
+ - type: dot_f1
2229
+ value: 59.46481665014866
2230
+ - type: dot_precision
2231
+ value: 58.93909626719057
2232
+ - type: dot_recall
2233
+ value: 60.0
2234
+ - type: euclidean_accuracy
2235
+ value: 99.81980198019802
2236
+ - type: euclidean_ap
2237
+ value: 95.21411049527
2238
+ - type: euclidean_f1
2239
+ value: 91.06090373280944
2240
+ - type: euclidean_precision
2241
+ value: 89.47876447876449
2242
+ - type: euclidean_recall
2243
+ value: 92.7
2244
+ - type: manhattan_accuracy
2245
+ value: 99.81782178217821
2246
+ - type: manhattan_ap
2247
+ value: 95.32449994414968
2248
+ - type: manhattan_f1
2249
+ value: 90.86395233366436
2250
+ - type: manhattan_precision
2251
+ value: 90.23668639053254
2252
+ - type: manhattan_recall
2253
+ value: 91.5
2254
+ - type: max_accuracy
2255
+ value: 99.81980198019802
2256
+ - type: max_ap
2257
+ value: 95.32449994414968
2258
+ - type: max_f1
2259
+ value: 91.06090373280944
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 59.08045614613064
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 30.297802606804748
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 49.12801740706292
2293
+ - type: mrr
2294
+ value: 50.05592956879722
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 23.380995453661917
2306
+ - type: cos_sim_spearman
2307
+ value: 24.941761858688917
2308
+ - type: dot_pearson
2309
+ value: 24.930577961642413
2310
+ - type: dot_spearman
2311
+ value: 24.804715835064492
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.243
2323
+ - type: map_at_10
2324
+ value: 1.886
2325
+ - type: map_at_100
2326
+ value: 10.040000000000001
2327
+ - type: map_at_1000
2328
+ value: 23.768
2329
+ - type: map_at_3
2330
+ value: 0.674
2331
+ - type: map_at_5
2332
+ value: 1.079
2333
+ - type: mrr_at_1
2334
+ value: 88.0
2335
+ - type: mrr_at_10
2336
+ value: 93.667
2337
+ - type: mrr_at_100
2338
+ value: 93.667
2339
+ - type: mrr_at_1000
2340
+ value: 93.667
2341
+ - type: mrr_at_3
2342
+ value: 93.667
2343
+ - type: mrr_at_5
2344
+ value: 93.667
2345
+ - type: ndcg_at_1
2346
+ value: 83.0
2347
+ - type: ndcg_at_10
2348
+ value: 76.777
2349
+ - type: ndcg_at_100
2350
+ value: 55.153
2351
+ - type: ndcg_at_1000
2352
+ value: 47.912
2353
+ - type: ndcg_at_3
2354
+ value: 81.358
2355
+ - type: ndcg_at_5
2356
+ value: 80.74799999999999
2357
+ - type: precision_at_1
2358
+ value: 88.0
2359
+ - type: precision_at_10
2360
+ value: 80.80000000000001
2361
+ - type: precision_at_100
2362
+ value: 56.02
2363
+ - type: precision_at_1000
2364
+ value: 21.51
2365
+ - type: precision_at_3
2366
+ value: 86.0
2367
+ - type: precision_at_5
2368
+ value: 86.0
2369
+ - type: recall_at_1
2370
+ value: 0.243
2371
+ - type: recall_at_10
2372
+ value: 2.0869999999999997
2373
+ - type: recall_at_100
2374
+ value: 13.014000000000001
2375
+ - type: recall_at_1000
2376
+ value: 44.433
2377
+ - type: recall_at_3
2378
+ value: 0.6910000000000001
2379
+ - type: recall_at_5
2380
+ value: 1.1440000000000001
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 3.066
2392
+ - type: map_at_10
2393
+ value: 10.615
2394
+ - type: map_at_100
2395
+ value: 16.463
2396
+ - type: map_at_1000
2397
+ value: 17.815
2398
+ - type: map_at_3
2399
+ value: 5.7860000000000005
2400
+ - type: map_at_5
2401
+ value: 7.353999999999999
2402
+ - type: mrr_at_1
2403
+ value: 38.775999999999996
2404
+ - type: mrr_at_10
2405
+ value: 53.846000000000004
2406
+ - type: mrr_at_100
2407
+ value: 54.37
2408
+ - type: mrr_at_1000
2409
+ value: 54.37
2410
+ - type: mrr_at_3
2411
+ value: 48.980000000000004
2412
+ - type: mrr_at_5
2413
+ value: 51.735
2414
+ - type: ndcg_at_1
2415
+ value: 34.694
2416
+ - type: ndcg_at_10
2417
+ value: 26.811
2418
+ - type: ndcg_at_100
2419
+ value: 37.342999999999996
2420
+ - type: ndcg_at_1000
2421
+ value: 47.964
2422
+ - type: ndcg_at_3
2423
+ value: 30.906
2424
+ - type: ndcg_at_5
2425
+ value: 27.77
2426
+ - type: precision_at_1
2427
+ value: 38.775999999999996
2428
+ - type: precision_at_10
2429
+ value: 23.878
2430
+ - type: precision_at_100
2431
+ value: 7.632999999999999
2432
+ - type: precision_at_1000
2433
+ value: 1.469
2434
+ - type: precision_at_3
2435
+ value: 31.973000000000003
2436
+ - type: precision_at_5
2437
+ value: 26.939
2438
+ - type: recall_at_1
2439
+ value: 3.066
2440
+ - type: recall_at_10
2441
+ value: 17.112
2442
+ - type: recall_at_100
2443
+ value: 47.723
2444
+ - type: recall_at_1000
2445
+ value: 79.50500000000001
2446
+ - type: recall_at_3
2447
+ value: 6.825
2448
+ - type: recall_at_5
2449
+ value: 9.584
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 72.76460000000002
2461
+ - type: ap
2462
+ value: 14.944240012137053
2463
+ - type: f1
2464
+ value: 55.89805777266571
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 63.30503678551217
2476
+ - type: f1
2477
+ value: 63.57492701921179
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 37.51066495006874
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 86.07021517553794
2500
+ - type: cos_sim_ap
2501
+ value: 74.15520712370555
2502
+ - type: cos_sim_f1
2503
+ value: 68.64321608040201
2504
+ - type: cos_sim_precision
2505
+ value: 65.51558752997602
2506
+ - type: cos_sim_recall
2507
+ value: 72.0844327176781
2508
+ - type: dot_accuracy
2509
+ value: 80.23484532395541
2510
+ - type: dot_ap
2511
+ value: 54.298763810214176
2512
+ - type: dot_f1
2513
+ value: 53.22254659779924
2514
+ - type: dot_precision
2515
+ value: 46.32525410476936
2516
+ - type: dot_recall
2517
+ value: 62.532981530343015
2518
+ - type: euclidean_accuracy
2519
+ value: 86.04637301066937
2520
+ - type: euclidean_ap
2521
+ value: 73.85333854233123
2522
+ - type: euclidean_f1
2523
+ value: 68.77723660599845
2524
+ - type: euclidean_precision
2525
+ value: 66.87437686939182
2526
+ - type: euclidean_recall
2527
+ value: 70.79155672823218
2528
+ - type: manhattan_accuracy
2529
+ value: 85.98676759849795
2530
+ - type: manhattan_ap
2531
+ value: 73.56016090035973
2532
+ - type: manhattan_f1
2533
+ value: 68.48878539036647
2534
+ - type: manhattan_precision
2535
+ value: 63.9505607690547
2536
+ - type: manhattan_recall
2537
+ value: 73.7203166226913
2538
+ - type: max_accuracy
2539
+ value: 86.07021517553794
2540
+ - type: max_ap
2541
+ value: 74.15520712370555
2542
+ - type: max_f1
2543
+ value: 68.77723660599845
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 88.92769821865176
2555
+ - type: cos_sim_ap
2556
+ value: 85.78879502899773
2557
+ - type: cos_sim_f1
2558
+ value: 78.14414083990464
2559
+ - type: cos_sim_precision
2560
+ value: 74.61651607480563
2561
+ - type: cos_sim_recall
2562
+ value: 82.0218663381583
2563
+ - type: dot_accuracy
2564
+ value: 84.95750378390964
2565
+ - type: dot_ap
2566
+ value: 75.80219641857563
2567
+ - type: dot_f1
2568
+ value: 70.13966179585681
2569
+ - type: dot_precision
2570
+ value: 65.71140262361251
2571
+ - type: dot_recall
2572
+ value: 75.20788420080073
2573
+ - type: euclidean_accuracy
2574
+ value: 88.93546008460433
2575
+ - type: euclidean_ap
2576
+ value: 85.72056428301667
2577
+ - type: euclidean_f1
2578
+ value: 78.14387902598124
2579
+ - type: euclidean_precision
2580
+ value: 75.3376688344172
2581
+ - type: euclidean_recall
2582
+ value: 81.16723129042192
2583
+ - type: manhattan_accuracy
2584
+ value: 88.96262661543835
2585
+ - type: manhattan_ap
2586
+ value: 85.76605136314335
2587
+ - type: manhattan_f1
2588
+ value: 78.26696165191743
2589
+ - type: manhattan_precision
2590
+ value: 75.0990659496179
2591
+ - type: manhattan_recall
2592
+ value: 81.71388974437943
2593
+ - type: max_accuracy
2594
+ value: 88.96262661543835
2595
+ - type: max_ap
2596
+ value: 85.78879502899773
2597
+ - type: max_f1
2598
+ value: 78.26696165191743
2599
+ ---
2600
+
2601
+ ## Usage
2602
+
2603
+ Coming soon
2604
+
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "amlt/1109_tnlrv3_bs32k_ft/all_kd_ft",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.15.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
mteb_metadata.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: mteb_metrics
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 76.22388059701493
18
+ - type: ap
19
+ value: 40.27466219523129
20
+ - type: f1
21
+ value: 70.60533006025108
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 87.525775
33
+ - type: ap
34
+ value: 83.51063993897611
35
+ - type: f1
36
+ value: 87.49342736805572
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 42.611999999999995
48
+ - type: f1
49
+ value: 42.05088045932892
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 23.826
61
+ - type: map_at_10
62
+ value: 38.269
63
+ - type: map_at_100
64
+ value: 39.322
65
+ - type: map_at_1000
66
+ value: 39.344
67
+ - type: map_at_3
68
+ value: 33.428000000000004
69
+ - type: map_at_5
70
+ value: 36.063
71
+ - type: mrr_at_1
72
+ value: 24.253
73
+ - type: mrr_at_10
74
+ value: 38.425
75
+ - type: mrr_at_100
76
+ value: 39.478
77
+ - type: mrr_at_1000
78
+ value: 39.5
79
+ - type: mrr_at_3
80
+ value: 33.606
81
+ - type: mrr_at_5
82
+ value: 36.195
83
+ - type: ndcg_at_1
84
+ value: 23.826
85
+ - type: ndcg_at_10
86
+ value: 46.693
87
+ - type: ndcg_at_100
88
+ value: 51.469
89
+ - type: ndcg_at_1000
90
+ value: 52.002
91
+ - type: ndcg_at_3
92
+ value: 36.603
93
+ - type: ndcg_at_5
94
+ value: 41.365
95
+ - type: precision_at_1
96
+ value: 23.826
97
+ - type: precision_at_10
98
+ value: 7.383000000000001
99
+ - type: precision_at_100
100
+ value: 0.9530000000000001
101
+ - type: precision_at_1000
102
+ value: 0.099
103
+ - type: precision_at_3
104
+ value: 15.268
105
+ - type: precision_at_5
106
+ value: 11.479000000000001
107
+ - type: recall_at_1
108
+ value: 23.826
109
+ - type: recall_at_10
110
+ value: 73.82600000000001
111
+ - type: recall_at_100
112
+ value: 95.306
113
+ - type: recall_at_1000
114
+ value: 99.431
115
+ - type: recall_at_3
116
+ value: 45.804
117
+ - type: recall_at_5
118
+ value: 57.397
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 44.13995374767436
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 37.13950072624313
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 59.35843292105327
152
+ - type: mrr
153
+ value: 73.72312359846987
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 84.55140418324174
165
+ - type: cos_sim_spearman
166
+ value: 84.21637675860022
167
+ - type: euclidean_pearson
168
+ value: 81.26069614610006
169
+ - type: euclidean_spearman
170
+ value: 83.25069210421785
171
+ - type: manhattan_pearson
172
+ value: 80.17441422581014
173
+ - type: manhattan_spearman
174
+ value: 81.87596198487877
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 81.87337662337661
186
+ - type: f1
187
+ value: 81.76647866926402
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 35.80600542614507
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 31.86321613256603
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.054
221
+ - type: map_at_10
222
+ value: 40.699999999999996
223
+ - type: map_at_100
224
+ value: 41.818
225
+ - type: map_at_1000
226
+ value: 41.959999999999994
227
+ - type: map_at_3
228
+ value: 37.742
229
+ - type: map_at_5
230
+ value: 39.427
231
+ - type: mrr_at_1
232
+ value: 38.769999999999996
233
+ - type: mrr_at_10
234
+ value: 46.150000000000006
235
+ - type: mrr_at_100
236
+ value: 46.865
237
+ - type: mrr_at_1000
238
+ value: 46.925
239
+ - type: mrr_at_3
240
+ value: 43.705
241
+ - type: mrr_at_5
242
+ value: 45.214999999999996
243
+ - type: ndcg_at_1
244
+ value: 38.769999999999996
245
+ - type: ndcg_at_10
246
+ value: 45.778
247
+ - type: ndcg_at_100
248
+ value: 50.38
249
+ - type: ndcg_at_1000
250
+ value: 52.922999999999995
251
+ - type: ndcg_at_3
252
+ value: 41.597
253
+ - type: ndcg_at_5
254
+ value: 43.631
255
+ - type: precision_at_1
256
+ value: 38.769999999999996
257
+ - type: precision_at_10
258
+ value: 8.269
259
+ - type: precision_at_100
260
+ value: 1.278
261
+ - type: precision_at_1000
262
+ value: 0.178
263
+ - type: precision_at_3
264
+ value: 19.266
265
+ - type: precision_at_5
266
+ value: 13.705
267
+ - type: recall_at_1
268
+ value: 32.054
269
+ - type: recall_at_10
270
+ value: 54.947
271
+ - type: recall_at_100
272
+ value: 74.79599999999999
273
+ - type: recall_at_1000
274
+ value: 91.40899999999999
275
+ - type: recall_at_3
276
+ value: 42.431000000000004
277
+ - type: recall_at_5
278
+ value: 48.519
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 29.035
290
+ - type: map_at_10
291
+ value: 38.007000000000005
292
+ - type: map_at_100
293
+ value: 39.125
294
+ - type: map_at_1000
295
+ value: 39.251999999999995
296
+ - type: map_at_3
297
+ value: 35.77
298
+ - type: map_at_5
299
+ value: 37.057
300
+ - type: mrr_at_1
301
+ value: 36.497
302
+ - type: mrr_at_10
303
+ value: 44.077
304
+ - type: mrr_at_100
305
+ value: 44.743
306
+ - type: mrr_at_1000
307
+ value: 44.79
308
+ - type: mrr_at_3
309
+ value: 42.123
310
+ - type: mrr_at_5
311
+ value: 43.308
312
+ - type: ndcg_at_1
313
+ value: 36.497
314
+ - type: ndcg_at_10
315
+ value: 42.986000000000004
316
+ - type: ndcg_at_100
317
+ value: 47.323
318
+ - type: ndcg_at_1000
319
+ value: 49.624
320
+ - type: ndcg_at_3
321
+ value: 39.805
322
+ - type: ndcg_at_5
323
+ value: 41.286
324
+ - type: precision_at_1
325
+ value: 36.497
326
+ - type: precision_at_10
327
+ value: 7.8340000000000005
328
+ - type: precision_at_100
329
+ value: 1.269
330
+ - type: precision_at_1000
331
+ value: 0.178
332
+ - type: precision_at_3
333
+ value: 19.023
334
+ - type: precision_at_5
335
+ value: 13.248
336
+ - type: recall_at_1
337
+ value: 29.035
338
+ - type: recall_at_10
339
+ value: 51.06
340
+ - type: recall_at_100
341
+ value: 69.64099999999999
342
+ - type: recall_at_1000
343
+ value: 84.49
344
+ - type: recall_at_3
345
+ value: 41.333999999999996
346
+ - type: recall_at_5
347
+ value: 45.663
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 37.239
359
+ - type: map_at_10
360
+ value: 47.873
361
+ - type: map_at_100
362
+ value: 48.842999999999996
363
+ - type: map_at_1000
364
+ value: 48.913000000000004
365
+ - type: map_at_3
366
+ value: 45.050000000000004
367
+ - type: map_at_5
368
+ value: 46.498
369
+ - type: mrr_at_1
370
+ value: 42.508
371
+ - type: mrr_at_10
372
+ value: 51.44
373
+ - type: mrr_at_100
374
+ value: 52.087
375
+ - type: mrr_at_1000
376
+ value: 52.129999999999995
377
+ - type: mrr_at_3
378
+ value: 49.164
379
+ - type: mrr_at_5
380
+ value: 50.343
381
+ - type: ndcg_at_1
382
+ value: 42.508
383
+ - type: ndcg_at_10
384
+ value: 53.31399999999999
385
+ - type: ndcg_at_100
386
+ value: 57.245000000000005
387
+ - type: ndcg_at_1000
388
+ value: 58.794000000000004
389
+ - type: ndcg_at_3
390
+ value: 48.295
391
+ - type: ndcg_at_5
392
+ value: 50.415
393
+ - type: precision_at_1
394
+ value: 42.508
395
+ - type: precision_at_10
396
+ value: 8.458
397
+ - type: precision_at_100
398
+ value: 1.133
399
+ - type: precision_at_1000
400
+ value: 0.132
401
+ - type: precision_at_3
402
+ value: 21.191
403
+ - type: precision_at_5
404
+ value: 14.307
405
+ - type: recall_at_1
406
+ value: 37.239
407
+ - type: recall_at_10
408
+ value: 65.99000000000001
409
+ - type: recall_at_100
410
+ value: 82.99499999999999
411
+ - type: recall_at_1000
412
+ value: 94.128
413
+ - type: recall_at_3
414
+ value: 52.382
415
+ - type: recall_at_5
416
+ value: 57.648999999999994
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 23.039
428
+ - type: map_at_10
429
+ value: 29.694
430
+ - type: map_at_100
431
+ value: 30.587999999999997
432
+ - type: map_at_1000
433
+ value: 30.692999999999998
434
+ - type: map_at_3
435
+ value: 27.708
436
+ - type: map_at_5
437
+ value: 28.774
438
+ - type: mrr_at_1
439
+ value: 24.633
440
+ - type: mrr_at_10
441
+ value: 31.478
442
+ - type: mrr_at_100
443
+ value: 32.299
444
+ - type: mrr_at_1000
445
+ value: 32.381
446
+ - type: mrr_at_3
447
+ value: 29.435
448
+ - type: mrr_at_5
449
+ value: 30.446
450
+ - type: ndcg_at_1
451
+ value: 24.633
452
+ - type: ndcg_at_10
453
+ value: 33.697
454
+ - type: ndcg_at_100
455
+ value: 38.080000000000005
456
+ - type: ndcg_at_1000
457
+ value: 40.812
458
+ - type: ndcg_at_3
459
+ value: 29.654000000000003
460
+ - type: ndcg_at_5
461
+ value: 31.474000000000004
462
+ - type: precision_at_1
463
+ value: 24.633
464
+ - type: precision_at_10
465
+ value: 5.0729999999999995
466
+ - type: precision_at_100
467
+ value: 0.753
468
+ - type: precision_at_1000
469
+ value: 0.10300000000000001
470
+ - type: precision_at_3
471
+ value: 12.279
472
+ - type: precision_at_5
473
+ value: 8.452
474
+ - type: recall_at_1
475
+ value: 23.039
476
+ - type: recall_at_10
477
+ value: 44.275999999999996
478
+ - type: recall_at_100
479
+ value: 64.4
480
+ - type: recall_at_1000
481
+ value: 85.135
482
+ - type: recall_at_3
483
+ value: 33.394
484
+ - type: recall_at_5
485
+ value: 37.687
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 13.594999999999999
497
+ - type: map_at_10
498
+ value: 19.933999999999997
499
+ - type: map_at_100
500
+ value: 20.966
501
+ - type: map_at_1000
502
+ value: 21.087
503
+ - type: map_at_3
504
+ value: 17.749000000000002
505
+ - type: map_at_5
506
+ value: 19.156000000000002
507
+ - type: mrr_at_1
508
+ value: 17.662
509
+ - type: mrr_at_10
510
+ value: 24.407
511
+ - type: mrr_at_100
512
+ value: 25.385
513
+ - type: mrr_at_1000
514
+ value: 25.465
515
+ - type: mrr_at_3
516
+ value: 22.056
517
+ - type: mrr_at_5
518
+ value: 23.630000000000003
519
+ - type: ndcg_at_1
520
+ value: 17.662
521
+ - type: ndcg_at_10
522
+ value: 24.391
523
+ - type: ndcg_at_100
524
+ value: 29.681
525
+ - type: ndcg_at_1000
526
+ value: 32.923
527
+ - type: ndcg_at_3
528
+ value: 20.271
529
+ - type: ndcg_at_5
530
+ value: 22.621
531
+ - type: precision_at_1
532
+ value: 17.662
533
+ - type: precision_at_10
534
+ value: 4.44
535
+ - type: precision_at_100
536
+ value: 0.8200000000000001
537
+ - type: precision_at_1000
538
+ value: 0.125
539
+ - type: precision_at_3
540
+ value: 9.577
541
+ - type: precision_at_5
542
+ value: 7.313
543
+ - type: recall_at_1
544
+ value: 13.594999999999999
545
+ - type: recall_at_10
546
+ value: 33.976
547
+ - type: recall_at_100
548
+ value: 57.43000000000001
549
+ - type: recall_at_1000
550
+ value: 80.958
551
+ - type: recall_at_3
552
+ value: 22.897000000000002
553
+ - type: recall_at_5
554
+ value: 28.714000000000002
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 26.683
566
+ - type: map_at_10
567
+ value: 35.068
568
+ - type: map_at_100
569
+ value: 36.311
570
+ - type: map_at_1000
571
+ value: 36.436
572
+ - type: map_at_3
573
+ value: 32.371
574
+ - type: map_at_5
575
+ value: 33.761
576
+ - type: mrr_at_1
577
+ value: 32.435
578
+ - type: mrr_at_10
579
+ value: 40.721000000000004
580
+ - type: mrr_at_100
581
+ value: 41.535
582
+ - type: mrr_at_1000
583
+ value: 41.593
584
+ - type: mrr_at_3
585
+ value: 38.401999999999994
586
+ - type: mrr_at_5
587
+ value: 39.567
588
+ - type: ndcg_at_1
589
+ value: 32.435
590
+ - type: ndcg_at_10
591
+ value: 40.538000000000004
592
+ - type: ndcg_at_100
593
+ value: 45.963
594
+ - type: ndcg_at_1000
595
+ value: 48.400999999999996
596
+ - type: ndcg_at_3
597
+ value: 36.048
598
+ - type: ndcg_at_5
599
+ value: 37.899
600
+ - type: precision_at_1
601
+ value: 32.435
602
+ - type: precision_at_10
603
+ value: 7.1129999999999995
604
+ - type: precision_at_100
605
+ value: 1.162
606
+ - type: precision_at_1000
607
+ value: 0.156
608
+ - type: precision_at_3
609
+ value: 16.683
610
+ - type: precision_at_5
611
+ value: 11.684
612
+ - type: recall_at_1
613
+ value: 26.683
614
+ - type: recall_at_10
615
+ value: 51.517
616
+ - type: recall_at_100
617
+ value: 74.553
618
+ - type: recall_at_1000
619
+ value: 90.649
620
+ - type: recall_at_3
621
+ value: 38.495000000000005
622
+ - type: recall_at_5
623
+ value: 43.495
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 24.186
635
+ - type: map_at_10
636
+ value: 31.972
637
+ - type: map_at_100
638
+ value: 33.117000000000004
639
+ - type: map_at_1000
640
+ value: 33.243
641
+ - type: map_at_3
642
+ value: 29.423
643
+ - type: map_at_5
644
+ value: 30.847
645
+ - type: mrr_at_1
646
+ value: 29.794999999999998
647
+ - type: mrr_at_10
648
+ value: 36.767
649
+ - type: mrr_at_100
650
+ value: 37.645
651
+ - type: mrr_at_1000
652
+ value: 37.716
653
+ - type: mrr_at_3
654
+ value: 34.513
655
+ - type: mrr_at_5
656
+ value: 35.791000000000004
657
+ - type: ndcg_at_1
658
+ value: 29.794999999999998
659
+ - type: ndcg_at_10
660
+ value: 36.786
661
+ - type: ndcg_at_100
662
+ value: 41.94
663
+ - type: ndcg_at_1000
664
+ value: 44.830999999999996
665
+ - type: ndcg_at_3
666
+ value: 32.504
667
+ - type: ndcg_at_5
668
+ value: 34.404
669
+ - type: precision_at_1
670
+ value: 29.794999999999998
671
+ - type: precision_at_10
672
+ value: 6.518
673
+ - type: precision_at_100
674
+ value: 1.0659999999999998
675
+ - type: precision_at_1000
676
+ value: 0.149
677
+ - type: precision_at_3
678
+ value: 15.296999999999999
679
+ - type: precision_at_5
680
+ value: 10.731
681
+ - type: recall_at_1
682
+ value: 24.186
683
+ - type: recall_at_10
684
+ value: 46.617
685
+ - type: recall_at_100
686
+ value: 68.75
687
+ - type: recall_at_1000
688
+ value: 88.864
689
+ - type: recall_at_3
690
+ value: 34.199
691
+ - type: recall_at_5
692
+ value: 39.462
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 24.22083333333333
704
+ - type: map_at_10
705
+ value: 31.606666666666662
706
+ - type: map_at_100
707
+ value: 32.6195
708
+ - type: map_at_1000
709
+ value: 32.739999999999995
710
+ - type: map_at_3
711
+ value: 29.37825
712
+ - type: map_at_5
713
+ value: 30.596083333333336
714
+ - type: mrr_at_1
715
+ value: 28.607916666666668
716
+ - type: mrr_at_10
717
+ value: 35.54591666666666
718
+ - type: mrr_at_100
719
+ value: 36.33683333333333
720
+ - type: mrr_at_1000
721
+ value: 36.40624999999999
722
+ - type: mrr_at_3
723
+ value: 33.526250000000005
724
+ - type: mrr_at_5
725
+ value: 34.6605
726
+ - type: ndcg_at_1
727
+ value: 28.607916666666668
728
+ - type: ndcg_at_10
729
+ value: 36.07966666666667
730
+ - type: ndcg_at_100
731
+ value: 40.73308333333333
732
+ - type: ndcg_at_1000
733
+ value: 43.40666666666666
734
+ - type: ndcg_at_3
735
+ value: 32.23525
736
+ - type: ndcg_at_5
737
+ value: 33.97083333333333
738
+ - type: precision_at_1
739
+ value: 28.607916666666668
740
+ - type: precision_at_10
741
+ value: 6.120333333333335
742
+ - type: precision_at_100
743
+ value: 0.9921666666666668
744
+ - type: precision_at_1000
745
+ value: 0.14091666666666666
746
+ - type: precision_at_3
747
+ value: 14.54975
748
+ - type: precision_at_5
749
+ value: 10.153166666666667
750
+ - type: recall_at_1
751
+ value: 24.22083333333333
752
+ - type: recall_at_10
753
+ value: 45.49183333333334
754
+ - type: recall_at_100
755
+ value: 66.28133333333332
756
+ - type: recall_at_1000
757
+ value: 85.16541666666667
758
+ - type: recall_at_3
759
+ value: 34.6485
760
+ - type: recall_at_5
761
+ value: 39.229749999999996
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 21.842
773
+ - type: map_at_10
774
+ value: 27.573999999999998
775
+ - type: map_at_100
776
+ value: 28.410999999999998
777
+ - type: map_at_1000
778
+ value: 28.502
779
+ - type: map_at_3
780
+ value: 25.921
781
+ - type: map_at_5
782
+ value: 26.888
783
+ - type: mrr_at_1
784
+ value: 24.08
785
+ - type: mrr_at_10
786
+ value: 29.915999999999997
787
+ - type: mrr_at_100
788
+ value: 30.669
789
+ - type: mrr_at_1000
790
+ value: 30.746000000000002
791
+ - type: mrr_at_3
792
+ value: 28.349000000000004
793
+ - type: mrr_at_5
794
+ value: 29.246
795
+ - type: ndcg_at_1
796
+ value: 24.08
797
+ - type: ndcg_at_10
798
+ value: 30.898999999999997
799
+ - type: ndcg_at_100
800
+ value: 35.272999999999996
801
+ - type: ndcg_at_1000
802
+ value: 37.679
803
+ - type: ndcg_at_3
804
+ value: 27.881
805
+ - type: ndcg_at_5
806
+ value: 29.432000000000002
807
+ - type: precision_at_1
808
+ value: 24.08
809
+ - type: precision_at_10
810
+ value: 4.678
811
+ - type: precision_at_100
812
+ value: 0.744
813
+ - type: precision_at_1000
814
+ value: 0.10300000000000001
815
+ - type: precision_at_3
816
+ value: 11.860999999999999
817
+ - type: precision_at_5
818
+ value: 8.16
819
+ - type: recall_at_1
820
+ value: 21.842
821
+ - type: recall_at_10
822
+ value: 38.66
823
+ - type: recall_at_100
824
+ value: 59.169000000000004
825
+ - type: recall_at_1000
826
+ value: 76.887
827
+ - type: recall_at_3
828
+ value: 30.532999999999998
829
+ - type: recall_at_5
830
+ value: 34.354
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 17.145
842
+ - type: map_at_10
843
+ value: 22.729
844
+ - type: map_at_100
845
+ value: 23.574
846
+ - type: map_at_1000
847
+ value: 23.695
848
+ - type: map_at_3
849
+ value: 21.044
850
+ - type: map_at_5
851
+ value: 21.981
852
+ - type: mrr_at_1
853
+ value: 20.888
854
+ - type: mrr_at_10
855
+ value: 26.529000000000003
856
+ - type: mrr_at_100
857
+ value: 27.308
858
+ - type: mrr_at_1000
859
+ value: 27.389000000000003
860
+ - type: mrr_at_3
861
+ value: 24.868000000000002
862
+ - type: mrr_at_5
863
+ value: 25.825
864
+ - type: ndcg_at_1
865
+ value: 20.888
866
+ - type: ndcg_at_10
867
+ value: 26.457000000000004
868
+ - type: ndcg_at_100
869
+ value: 30.764000000000003
870
+ - type: ndcg_at_1000
871
+ value: 33.825
872
+ - type: ndcg_at_3
873
+ value: 23.483999999999998
874
+ - type: ndcg_at_5
875
+ value: 24.836
876
+ - type: precision_at_1
877
+ value: 20.888
878
+ - type: precision_at_10
879
+ value: 4.58
880
+ - type: precision_at_100
881
+ value: 0.784
882
+ - type: precision_at_1000
883
+ value: 0.121
884
+ - type: precision_at_3
885
+ value: 10.874
886
+ - type: precision_at_5
887
+ value: 7.639
888
+ - type: recall_at_1
889
+ value: 17.145
890
+ - type: recall_at_10
891
+ value: 33.938
892
+ - type: recall_at_100
893
+ value: 53.672
894
+ - type: recall_at_1000
895
+ value: 76.023
896
+ - type: recall_at_3
897
+ value: 25.363000000000003
898
+ - type: recall_at_5
899
+ value: 29.023
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 24.275
911
+ - type: map_at_10
912
+ value: 30.438
913
+ - type: map_at_100
914
+ value: 31.489
915
+ - type: map_at_1000
916
+ value: 31.601000000000003
917
+ - type: map_at_3
918
+ value: 28.647
919
+ - type: map_at_5
920
+ value: 29.660999999999998
921
+ - type: mrr_at_1
922
+ value: 28.077999999999996
923
+ - type: mrr_at_10
924
+ value: 34.098
925
+ - type: mrr_at_100
926
+ value: 35.025
927
+ - type: mrr_at_1000
928
+ value: 35.109
929
+ - type: mrr_at_3
930
+ value: 32.4
931
+ - type: mrr_at_5
932
+ value: 33.379999999999995
933
+ - type: ndcg_at_1
934
+ value: 28.077999999999996
935
+ - type: ndcg_at_10
936
+ value: 34.271
937
+ - type: ndcg_at_100
938
+ value: 39.352
939
+ - type: ndcg_at_1000
940
+ value: 42.199
941
+ - type: ndcg_at_3
942
+ value: 30.978
943
+ - type: ndcg_at_5
944
+ value: 32.498
945
+ - type: precision_at_1
946
+ value: 28.077999999999996
947
+ - type: precision_at_10
948
+ value: 5.345
949
+ - type: precision_at_100
950
+ value: 0.897
951
+ - type: precision_at_1000
952
+ value: 0.125
953
+ - type: precision_at_3
954
+ value: 13.526
955
+ - type: precision_at_5
956
+ value: 9.16
957
+ - type: recall_at_1
958
+ value: 24.275
959
+ - type: recall_at_10
960
+ value: 42.362
961
+ - type: recall_at_100
962
+ value: 64.461
963
+ - type: recall_at_1000
964
+ value: 84.981
965
+ - type: recall_at_3
966
+ value: 33.249
967
+ - type: recall_at_5
968
+ value: 37.214999999999996
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 22.358
980
+ - type: map_at_10
981
+ value: 30.062
982
+ - type: map_at_100
983
+ value: 31.189
984
+ - type: map_at_1000
985
+ value: 31.386999999999997
986
+ - type: map_at_3
987
+ value: 27.672
988
+ - type: map_at_5
989
+ value: 28.76
990
+ - type: mrr_at_1
991
+ value: 26.877000000000002
992
+ - type: mrr_at_10
993
+ value: 33.948
994
+ - type: mrr_at_100
995
+ value: 34.746
996
+ - type: mrr_at_1000
997
+ value: 34.816
998
+ - type: mrr_at_3
999
+ value: 31.884
1000
+ - type: mrr_at_5
1001
+ value: 33.001000000000005
1002
+ - type: ndcg_at_1
1003
+ value: 26.877000000000002
1004
+ - type: ndcg_at_10
1005
+ value: 34.977000000000004
1006
+ - type: ndcg_at_100
1007
+ value: 39.753
1008
+ - type: ndcg_at_1000
1009
+ value: 42.866
1010
+ - type: ndcg_at_3
1011
+ value: 30.956
1012
+ - type: ndcg_at_5
1013
+ value: 32.381
1014
+ - type: precision_at_1
1015
+ value: 26.877000000000002
1016
+ - type: precision_at_10
1017
+ value: 6.7
1018
+ - type: precision_at_100
1019
+ value: 1.287
1020
+ - type: precision_at_1000
1021
+ value: 0.215
1022
+ - type: precision_at_3
1023
+ value: 14.360999999999999
1024
+ - type: precision_at_5
1025
+ value: 10.119
1026
+ - type: recall_at_1
1027
+ value: 22.358
1028
+ - type: recall_at_10
1029
+ value: 44.183
1030
+ - type: recall_at_100
1031
+ value: 67.14
1032
+ - type: recall_at_1000
1033
+ value: 87.53999999999999
1034
+ - type: recall_at_3
1035
+ value: 32.79
1036
+ - type: recall_at_5
1037
+ value: 36.829
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 19.198999999999998
1049
+ - type: map_at_10
1050
+ value: 25.229000000000003
1051
+ - type: map_at_100
1052
+ value: 26.003
1053
+ - type: map_at_1000
1054
+ value: 26.111
1055
+ - type: map_at_3
1056
+ value: 23.442
1057
+ - type: map_at_5
1058
+ value: 24.343
1059
+ - type: mrr_at_1
1060
+ value: 21.072
1061
+ - type: mrr_at_10
1062
+ value: 27.02
1063
+ - type: mrr_at_100
1064
+ value: 27.735
1065
+ - type: mrr_at_1000
1066
+ value: 27.815
1067
+ - type: mrr_at_3
1068
+ value: 25.416
1069
+ - type: mrr_at_5
1070
+ value: 26.173999999999996
1071
+ - type: ndcg_at_1
1072
+ value: 21.072
1073
+ - type: ndcg_at_10
1074
+ value: 28.862
1075
+ - type: ndcg_at_100
1076
+ value: 33.043
1077
+ - type: ndcg_at_1000
1078
+ value: 36.003
1079
+ - type: ndcg_at_3
1080
+ value: 25.35
1081
+ - type: ndcg_at_5
1082
+ value: 26.773000000000003
1083
+ - type: precision_at_1
1084
+ value: 21.072
1085
+ - type: precision_at_10
1086
+ value: 4.436
1087
+ - type: precision_at_100
1088
+ value: 0.713
1089
+ - type: precision_at_1000
1090
+ value: 0.106
1091
+ - type: precision_at_3
1092
+ value: 10.659
1093
+ - type: precision_at_5
1094
+ value: 7.32
1095
+ - type: recall_at_1
1096
+ value: 19.198999999999998
1097
+ - type: recall_at_10
1098
+ value: 38.376
1099
+ - type: recall_at_100
1100
+ value: 58.36900000000001
1101
+ - type: recall_at_1000
1102
+ value: 80.92099999999999
1103
+ - type: recall_at_3
1104
+ value: 28.715000000000003
1105
+ - type: recall_at_5
1106
+ value: 32.147
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 5.9319999999999995
1118
+ - type: map_at_10
1119
+ value: 10.483
1120
+ - type: map_at_100
1121
+ value: 11.97
1122
+ - type: map_at_1000
1123
+ value: 12.171999999999999
1124
+ - type: map_at_3
1125
+ value: 8.477
1126
+ - type: map_at_5
1127
+ value: 9.495000000000001
1128
+ - type: mrr_at_1
1129
+ value: 13.094
1130
+ - type: mrr_at_10
1131
+ value: 21.282
1132
+ - type: mrr_at_100
1133
+ value: 22.556
1134
+ - type: mrr_at_1000
1135
+ value: 22.628999999999998
1136
+ - type: mrr_at_3
1137
+ value: 18.218999999999998
1138
+ - type: mrr_at_5
1139
+ value: 19.900000000000002
1140
+ - type: ndcg_at_1
1141
+ value: 13.094
1142
+ - type: ndcg_at_10
1143
+ value: 15.811
1144
+ - type: ndcg_at_100
1145
+ value: 23.035
1146
+ - type: ndcg_at_1000
1147
+ value: 27.089999999999996
1148
+ - type: ndcg_at_3
1149
+ value: 11.905000000000001
1150
+ - type: ndcg_at_5
1151
+ value: 13.377
1152
+ - type: precision_at_1
1153
+ value: 13.094
1154
+ - type: precision_at_10
1155
+ value: 5.225
1156
+ - type: precision_at_100
1157
+ value: 1.2970000000000002
1158
+ - type: precision_at_1000
1159
+ value: 0.203
1160
+ - type: precision_at_3
1161
+ value: 8.86
1162
+ - type: precision_at_5
1163
+ value: 7.309
1164
+ - type: recall_at_1
1165
+ value: 5.9319999999999995
1166
+ - type: recall_at_10
1167
+ value: 20.305
1168
+ - type: recall_at_100
1169
+ value: 46.314
1170
+ - type: recall_at_1000
1171
+ value: 69.612
1172
+ - type: recall_at_3
1173
+ value: 11.21
1174
+ - type: recall_at_5
1175
+ value: 14.773
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 8.674
1187
+ - type: map_at_10
1188
+ value: 17.822
1189
+ - type: map_at_100
1190
+ value: 24.794
1191
+ - type: map_at_1000
1192
+ value: 26.214
1193
+ - type: map_at_3
1194
+ value: 12.690999999999999
1195
+ - type: map_at_5
1196
+ value: 15.033
1197
+ - type: mrr_at_1
1198
+ value: 61.75000000000001
1199
+ - type: mrr_at_10
1200
+ value: 71.58
1201
+ - type: mrr_at_100
1202
+ value: 71.923
1203
+ - type: mrr_at_1000
1204
+ value: 71.932
1205
+ - type: mrr_at_3
1206
+ value: 70.125
1207
+ - type: mrr_at_5
1208
+ value: 71.038
1209
+ - type: ndcg_at_1
1210
+ value: 51.0
1211
+ - type: ndcg_at_10
1212
+ value: 38.637
1213
+ - type: ndcg_at_100
1214
+ value: 42.398
1215
+ - type: ndcg_at_1000
1216
+ value: 48.962
1217
+ - type: ndcg_at_3
1218
+ value: 43.29
1219
+ - type: ndcg_at_5
1220
+ value: 40.763
1221
+ - type: precision_at_1
1222
+ value: 61.75000000000001
1223
+ - type: precision_at_10
1224
+ value: 30.125
1225
+ - type: precision_at_100
1226
+ value: 9.53
1227
+ - type: precision_at_1000
1228
+ value: 1.9619999999999997
1229
+ - type: precision_at_3
1230
+ value: 45.583
1231
+ - type: precision_at_5
1232
+ value: 38.95
1233
+ - type: recall_at_1
1234
+ value: 8.674
1235
+ - type: recall_at_10
1236
+ value: 23.122
1237
+ - type: recall_at_100
1238
+ value: 47.46
1239
+ - type: recall_at_1000
1240
+ value: 67.662
1241
+ - type: recall_at_3
1242
+ value: 13.946
1243
+ - type: recall_at_5
1244
+ value: 17.768
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 46.86000000000001
1256
+ - type: f1
1257
+ value: 41.343580452760776
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 36.609
1269
+ - type: map_at_10
1270
+ value: 47.552
1271
+ - type: map_at_100
1272
+ value: 48.283
1273
+ - type: map_at_1000
1274
+ value: 48.321
1275
+ - type: map_at_3
1276
+ value: 44.869
1277
+ - type: map_at_5
1278
+ value: 46.509
1279
+ - type: mrr_at_1
1280
+ value: 39.214
1281
+ - type: mrr_at_10
1282
+ value: 50.434999999999995
1283
+ - type: mrr_at_100
1284
+ value: 51.122
1285
+ - type: mrr_at_1000
1286
+ value: 51.151
1287
+ - type: mrr_at_3
1288
+ value: 47.735
1289
+ - type: mrr_at_5
1290
+ value: 49.394
1291
+ - type: ndcg_at_1
1292
+ value: 39.214
1293
+ - type: ndcg_at_10
1294
+ value: 53.52400000000001
1295
+ - type: ndcg_at_100
1296
+ value: 56.997
1297
+ - type: ndcg_at_1000
1298
+ value: 57.975
1299
+ - type: ndcg_at_3
1300
+ value: 48.173
1301
+ - type: ndcg_at_5
1302
+ value: 51.05800000000001
1303
+ - type: precision_at_1
1304
+ value: 39.214
1305
+ - type: precision_at_10
1306
+ value: 7.573
1307
+ - type: precision_at_100
1308
+ value: 0.9440000000000001
1309
+ - type: precision_at_1000
1310
+ value: 0.104
1311
+ - type: precision_at_3
1312
+ value: 19.782
1313
+ - type: precision_at_5
1314
+ value: 13.453000000000001
1315
+ - type: recall_at_1
1316
+ value: 36.609
1317
+ - type: recall_at_10
1318
+ value: 69.247
1319
+ - type: recall_at_100
1320
+ value: 84.99600000000001
1321
+ - type: recall_at_1000
1322
+ value: 92.40899999999999
1323
+ - type: recall_at_3
1324
+ value: 54.856
1325
+ - type: recall_at_5
1326
+ value: 61.797000000000004
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 16.466
1338
+ - type: map_at_10
1339
+ value: 27.060000000000002
1340
+ - type: map_at_100
1341
+ value: 28.511999999999997
1342
+ - type: map_at_1000
1343
+ value: 28.693
1344
+ - type: map_at_3
1345
+ value: 22.777
1346
+ - type: map_at_5
1347
+ value: 25.086000000000002
1348
+ - type: mrr_at_1
1349
+ value: 32.716
1350
+ - type: mrr_at_10
1351
+ value: 41.593999999999994
1352
+ - type: mrr_at_100
1353
+ value: 42.370000000000005
1354
+ - type: mrr_at_1000
1355
+ value: 42.419000000000004
1356
+ - type: mrr_at_3
1357
+ value: 38.143
1358
+ - type: mrr_at_5
1359
+ value: 40.288000000000004
1360
+ - type: ndcg_at_1
1361
+ value: 32.716
1362
+ - type: ndcg_at_10
1363
+ value: 34.795
1364
+ - type: ndcg_at_100
1365
+ value: 40.58
1366
+ - type: ndcg_at_1000
1367
+ value: 43.993
1368
+ - type: ndcg_at_3
1369
+ value: 29.573
1370
+ - type: ndcg_at_5
1371
+ value: 31.583
1372
+ - type: precision_at_1
1373
+ value: 32.716
1374
+ - type: precision_at_10
1375
+ value: 9.937999999999999
1376
+ - type: precision_at_100
1377
+ value: 1.585
1378
+ - type: precision_at_1000
1379
+ value: 0.22
1380
+ - type: precision_at_3
1381
+ value: 19.496
1382
+ - type: precision_at_5
1383
+ value: 15.247
1384
+ - type: recall_at_1
1385
+ value: 16.466
1386
+ - type: recall_at_10
1387
+ value: 42.886
1388
+ - type: recall_at_100
1389
+ value: 64.724
1390
+ - type: recall_at_1000
1391
+ value: 85.347
1392
+ - type: recall_at_3
1393
+ value: 26.765
1394
+ - type: recall_at_5
1395
+ value: 33.603
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 33.025
1407
+ - type: map_at_10
1408
+ value: 47.343
1409
+ - type: map_at_100
1410
+ value: 48.207
1411
+ - type: map_at_1000
1412
+ value: 48.281
1413
+ - type: map_at_3
1414
+ value: 44.519
1415
+ - type: map_at_5
1416
+ value: 46.217000000000006
1417
+ - type: mrr_at_1
1418
+ value: 66.05
1419
+ - type: mrr_at_10
1420
+ value: 72.94699999999999
1421
+ - type: mrr_at_100
1422
+ value: 73.289
1423
+ - type: mrr_at_1000
1424
+ value: 73.30499999999999
1425
+ - type: mrr_at_3
1426
+ value: 71.686
1427
+ - type: mrr_at_5
1428
+ value: 72.491
1429
+ - type: ndcg_at_1
1430
+ value: 66.05
1431
+ - type: ndcg_at_10
1432
+ value: 56.338
1433
+ - type: ndcg_at_100
1434
+ value: 59.599999999999994
1435
+ - type: ndcg_at_1000
1436
+ value: 61.138000000000005
1437
+ - type: ndcg_at_3
1438
+ value: 52.034000000000006
1439
+ - type: ndcg_at_5
1440
+ value: 54.352000000000004
1441
+ - type: precision_at_1
1442
+ value: 66.05
1443
+ - type: precision_at_10
1444
+ value: 11.693000000000001
1445
+ - type: precision_at_100
1446
+ value: 1.425
1447
+ - type: precision_at_1000
1448
+ value: 0.163
1449
+ - type: precision_at_3
1450
+ value: 32.613
1451
+ - type: precision_at_5
1452
+ value: 21.401999999999997
1453
+ - type: recall_at_1
1454
+ value: 33.025
1455
+ - type: recall_at_10
1456
+ value: 58.467
1457
+ - type: recall_at_100
1458
+ value: 71.242
1459
+ - type: recall_at_1000
1460
+ value: 81.452
1461
+ - type: recall_at_3
1462
+ value: 48.92
1463
+ - type: recall_at_5
1464
+ value: 53.504
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 75.5492
1476
+ - type: ap
1477
+ value: 69.42911637216271
1478
+ - type: f1
1479
+ value: 75.39113704261024
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 23.173
1491
+ - type: map_at_10
1492
+ value: 35.453
1493
+ - type: map_at_100
1494
+ value: 36.573
1495
+ - type: map_at_1000
1496
+ value: 36.620999999999995
1497
+ - type: map_at_3
1498
+ value: 31.655
1499
+ - type: map_at_5
1500
+ value: 33.823
1501
+ - type: mrr_at_1
1502
+ value: 23.868000000000002
1503
+ - type: mrr_at_10
1504
+ value: 36.085
1505
+ - type: mrr_at_100
1506
+ value: 37.15
1507
+ - type: mrr_at_1000
1508
+ value: 37.193
1509
+ - type: mrr_at_3
1510
+ value: 32.376
1511
+ - type: mrr_at_5
1512
+ value: 34.501
1513
+ - type: ndcg_at_1
1514
+ value: 23.854
1515
+ - type: ndcg_at_10
1516
+ value: 42.33
1517
+ - type: ndcg_at_100
1518
+ value: 47.705999999999996
1519
+ - type: ndcg_at_1000
1520
+ value: 48.91
1521
+ - type: ndcg_at_3
1522
+ value: 34.604
1523
+ - type: ndcg_at_5
1524
+ value: 38.473
1525
+ - type: precision_at_1
1526
+ value: 23.854
1527
+ - type: precision_at_10
1528
+ value: 6.639
1529
+ - type: precision_at_100
1530
+ value: 0.932
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 14.685
1535
+ - type: precision_at_5
1536
+ value: 10.782
1537
+ - type: recall_at_1
1538
+ value: 23.173
1539
+ - type: recall_at_10
1540
+ value: 63.441
1541
+ - type: recall_at_100
1542
+ value: 88.25
1543
+ - type: recall_at_1000
1544
+ value: 97.438
1545
+ - type: recall_at_3
1546
+ value: 42.434
1547
+ - type: recall_at_5
1548
+ value: 51.745
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 92.05426356589147
1560
+ - type: f1
1561
+ value: 91.88068588063942
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 73.23985408116735
1573
+ - type: f1
1574
+ value: 55.858906745287506
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 72.21923335574984
1586
+ - type: f1
1587
+ value: 70.0174116204253
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 75.77673167451245
1599
+ - type: f1
1600
+ value: 75.44811354778666
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 31.340414710728737
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 28.196676760061578
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 29.564149683482206
1634
+ - type: mrr
1635
+ value: 30.28995474250486
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 5.93
1647
+ - type: map_at_10
1648
+ value: 12.828000000000001
1649
+ - type: map_at_100
1650
+ value: 15.501000000000001
1651
+ - type: map_at_1000
1652
+ value: 16.791
1653
+ - type: map_at_3
1654
+ value: 9.727
1655
+ - type: map_at_5
1656
+ value: 11.318999999999999
1657
+ - type: mrr_at_1
1658
+ value: 47.678
1659
+ - type: mrr_at_10
1660
+ value: 55.893
1661
+ - type: mrr_at_100
1662
+ value: 56.491
1663
+ - type: mrr_at_1000
1664
+ value: 56.53
1665
+ - type: mrr_at_3
1666
+ value: 54.386
1667
+ - type: mrr_at_5
1668
+ value: 55.516
1669
+ - type: ndcg_at_1
1670
+ value: 45.975
1671
+ - type: ndcg_at_10
1672
+ value: 33.928999999999995
1673
+ - type: ndcg_at_100
1674
+ value: 30.164
1675
+ - type: ndcg_at_1000
1676
+ value: 38.756
1677
+ - type: ndcg_at_3
1678
+ value: 41.077000000000005
1679
+ - type: ndcg_at_5
1680
+ value: 38.415
1681
+ - type: precision_at_1
1682
+ value: 47.678
1683
+ - type: precision_at_10
1684
+ value: 24.365000000000002
1685
+ - type: precision_at_100
1686
+ value: 7.344
1687
+ - type: precision_at_1000
1688
+ value: 1.994
1689
+ - type: precision_at_3
1690
+ value: 38.184000000000005
1691
+ - type: precision_at_5
1692
+ value: 33.003
1693
+ - type: recall_at_1
1694
+ value: 5.93
1695
+ - type: recall_at_10
1696
+ value: 16.239
1697
+ - type: recall_at_100
1698
+ value: 28.782999999999998
1699
+ - type: recall_at_1000
1700
+ value: 60.11
1701
+ - type: recall_at_3
1702
+ value: 10.700999999999999
1703
+ - type: recall_at_5
1704
+ value: 13.584
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 36.163000000000004
1716
+ - type: map_at_10
1717
+ value: 51.520999999999994
1718
+ - type: map_at_100
1719
+ value: 52.449
1720
+ - type: map_at_1000
1721
+ value: 52.473000000000006
1722
+ - type: map_at_3
1723
+ value: 47.666
1724
+ - type: map_at_5
1725
+ value: 50.043000000000006
1726
+ - type: mrr_at_1
1727
+ value: 40.266999999999996
1728
+ - type: mrr_at_10
1729
+ value: 54.074
1730
+ - type: mrr_at_100
1731
+ value: 54.722
1732
+ - type: mrr_at_1000
1733
+ value: 54.739000000000004
1734
+ - type: mrr_at_3
1735
+ value: 51.043000000000006
1736
+ - type: mrr_at_5
1737
+ value: 52.956
1738
+ - type: ndcg_at_1
1739
+ value: 40.238
1740
+ - type: ndcg_at_10
1741
+ value: 58.73199999999999
1742
+ - type: ndcg_at_100
1743
+ value: 62.470000000000006
1744
+ - type: ndcg_at_1000
1745
+ value: 63.083999999999996
1746
+ - type: ndcg_at_3
1747
+ value: 51.672
1748
+ - type: ndcg_at_5
1749
+ value: 55.564
1750
+ - type: precision_at_1
1751
+ value: 40.238
1752
+ - type: precision_at_10
1753
+ value: 9.279
1754
+ - type: precision_at_100
1755
+ value: 1.139
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 23.078000000000003
1760
+ - type: precision_at_5
1761
+ value: 16.176
1762
+ - type: recall_at_1
1763
+ value: 36.163000000000004
1764
+ - type: recall_at_10
1765
+ value: 77.88199999999999
1766
+ - type: recall_at_100
1767
+ value: 93.83399999999999
1768
+ - type: recall_at_1000
1769
+ value: 98.465
1770
+ - type: recall_at_3
1771
+ value: 59.857000000000006
1772
+ - type: recall_at_5
1773
+ value: 68.73599999999999
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 70.344
1785
+ - type: map_at_10
1786
+ value: 83.907
1787
+ - type: map_at_100
1788
+ value: 84.536
1789
+ - type: map_at_1000
1790
+ value: 84.557
1791
+ - type: map_at_3
1792
+ value: 80.984
1793
+ - type: map_at_5
1794
+ value: 82.844
1795
+ - type: mrr_at_1
1796
+ value: 81.02000000000001
1797
+ - type: mrr_at_10
1798
+ value: 87.158
1799
+ - type: mrr_at_100
1800
+ value: 87.268
1801
+ - type: mrr_at_1000
1802
+ value: 87.26899999999999
1803
+ - type: mrr_at_3
1804
+ value: 86.17
1805
+ - type: mrr_at_5
1806
+ value: 86.87
1807
+ - type: ndcg_at_1
1808
+ value: 81.02000000000001
1809
+ - type: ndcg_at_10
1810
+ value: 87.70700000000001
1811
+ - type: ndcg_at_100
1812
+ value: 89.004
1813
+ - type: ndcg_at_1000
1814
+ value: 89.139
1815
+ - type: ndcg_at_3
1816
+ value: 84.841
1817
+ - type: ndcg_at_5
1818
+ value: 86.455
1819
+ - type: precision_at_1
1820
+ value: 81.02000000000001
1821
+ - type: precision_at_10
1822
+ value: 13.248999999999999
1823
+ - type: precision_at_100
1824
+ value: 1.516
1825
+ - type: precision_at_1000
1826
+ value: 0.156
1827
+ - type: precision_at_3
1828
+ value: 36.963
1829
+ - type: precision_at_5
1830
+ value: 24.33
1831
+ - type: recall_at_1
1832
+ value: 70.344
1833
+ - type: recall_at_10
1834
+ value: 94.75099999999999
1835
+ - type: recall_at_100
1836
+ value: 99.30499999999999
1837
+ - type: recall_at_1000
1838
+ value: 99.928
1839
+ - type: recall_at_3
1840
+ value: 86.506
1841
+ - type: recall_at_5
1842
+ value: 91.083
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 42.873718018378305
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 56.39477366450528
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 3.868
1876
+ - type: map_at_10
1877
+ value: 9.611
1878
+ - type: map_at_100
1879
+ value: 11.087
1880
+ - type: map_at_1000
1881
+ value: 11.332
1882
+ - type: map_at_3
1883
+ value: 6.813
1884
+ - type: map_at_5
1885
+ value: 8.233
1886
+ - type: mrr_at_1
1887
+ value: 19.0
1888
+ - type: mrr_at_10
1889
+ value: 28.457
1890
+ - type: mrr_at_100
1891
+ value: 29.613
1892
+ - type: mrr_at_1000
1893
+ value: 29.695
1894
+ - type: mrr_at_3
1895
+ value: 25.55
1896
+ - type: mrr_at_5
1897
+ value: 27.29
1898
+ - type: ndcg_at_1
1899
+ value: 19.0
1900
+ - type: ndcg_at_10
1901
+ value: 16.419
1902
+ - type: ndcg_at_100
1903
+ value: 22.817999999999998
1904
+ - type: ndcg_at_1000
1905
+ value: 27.72
1906
+ - type: ndcg_at_3
1907
+ value: 15.379000000000001
1908
+ - type: ndcg_at_5
1909
+ value: 13.645
1910
+ - type: precision_at_1
1911
+ value: 19.0
1912
+ - type: precision_at_10
1913
+ value: 8.540000000000001
1914
+ - type: precision_at_100
1915
+ value: 1.7819999999999998
1916
+ - type: precision_at_1000
1917
+ value: 0.297
1918
+ - type: precision_at_3
1919
+ value: 14.267
1920
+ - type: precision_at_5
1921
+ value: 12.04
1922
+ - type: recall_at_1
1923
+ value: 3.868
1924
+ - type: recall_at_10
1925
+ value: 17.288
1926
+ - type: recall_at_100
1927
+ value: 36.144999999999996
1928
+ - type: recall_at_1000
1929
+ value: 60.199999999999996
1930
+ - type: recall_at_3
1931
+ value: 8.688
1932
+ - type: recall_at_5
1933
+ value: 12.198
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 83.96614722598582
1945
+ - type: cos_sim_spearman
1946
+ value: 78.9003023008781
1947
+ - type: euclidean_pearson
1948
+ value: 81.01829384436505
1949
+ - type: euclidean_spearman
1950
+ value: 78.93248416788914
1951
+ - type: manhattan_pearson
1952
+ value: 81.1665428926402
1953
+ - type: manhattan_spearman
1954
+ value: 78.93264116287453
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 83.54613363895993
1966
+ - type: cos_sim_spearman
1967
+ value: 75.1883451602451
1968
+ - type: euclidean_pearson
1969
+ value: 79.70320886899894
1970
+ - type: euclidean_spearman
1971
+ value: 74.5917140136796
1972
+ - type: manhattan_pearson
1973
+ value: 79.82157067185999
1974
+ - type: manhattan_spearman
1975
+ value: 74.74185720594735
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 81.30430156721782
1987
+ - type: cos_sim_spearman
1988
+ value: 81.79962989974364
1989
+ - type: euclidean_pearson
1990
+ value: 80.89058823224924
1991
+ - type: euclidean_spearman
1992
+ value: 81.35929372984597
1993
+ - type: manhattan_pearson
1994
+ value: 81.12204370487478
1995
+ - type: manhattan_spearman
1996
+ value: 81.6248963282232
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 81.13064504403134
2008
+ - type: cos_sim_spearman
2009
+ value: 78.48371403924872
2010
+ - type: euclidean_pearson
2011
+ value: 80.16794919665591
2012
+ - type: euclidean_spearman
2013
+ value: 78.29216082221699
2014
+ - type: manhattan_pearson
2015
+ value: 80.22308565207301
2016
+ - type: manhattan_spearman
2017
+ value: 78.37829229948022
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 86.52918899541099
2029
+ - type: cos_sim_spearman
2030
+ value: 87.49276894673142
2031
+ - type: euclidean_pearson
2032
+ value: 86.77440570164254
2033
+ - type: euclidean_spearman
2034
+ value: 87.5753295736756
2035
+ - type: manhattan_pearson
2036
+ value: 86.86098573892133
2037
+ - type: manhattan_spearman
2038
+ value: 87.65848591821947
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 82.86805307244882
2050
+ - type: cos_sim_spearman
2051
+ value: 84.58066253757511
2052
+ - type: euclidean_pearson
2053
+ value: 84.38377000876991
2054
+ - type: euclidean_spearman
2055
+ value: 85.1837278784528
2056
+ - type: manhattan_pearson
2057
+ value: 84.41903291363842
2058
+ - type: manhattan_spearman
2059
+ value: 85.19023736251052
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 86.77218560282436
2071
+ - type: cos_sim_spearman
2072
+ value: 87.94243515296604
2073
+ - type: euclidean_pearson
2074
+ value: 88.22800939214864
2075
+ - type: euclidean_spearman
2076
+ value: 87.91106839439841
2077
+ - type: manhattan_pearson
2078
+ value: 88.17063269848741
2079
+ - type: manhattan_spearman
2080
+ value: 87.72751904126062
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 60.40731554300387
2092
+ - type: cos_sim_spearman
2093
+ value: 63.76300532966479
2094
+ - type: euclidean_pearson
2095
+ value: 62.94727878229085
2096
+ - type: euclidean_spearman
2097
+ value: 63.678039531461216
2098
+ - type: manhattan_pearson
2099
+ value: 63.00661039863549
2100
+ - type: manhattan_spearman
2101
+ value: 63.6282591984376
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 84.92731569745344
2113
+ - type: cos_sim_spearman
2114
+ value: 86.36336704300167
2115
+ - type: euclidean_pearson
2116
+ value: 86.09122224841195
2117
+ - type: euclidean_spearman
2118
+ value: 86.2116149319238
2119
+ - type: manhattan_pearson
2120
+ value: 86.07879456717032
2121
+ - type: manhattan_spearman
2122
+ value: 86.2022069635119
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 79.75976311752326
2134
+ - type: mrr
2135
+ value: 94.15782837351466
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 51.193999999999996
2147
+ - type: map_at_10
2148
+ value: 61.224999999999994
2149
+ - type: map_at_100
2150
+ value: 62.031000000000006
2151
+ - type: map_at_1000
2152
+ value: 62.066
2153
+ - type: map_at_3
2154
+ value: 59.269000000000005
2155
+ - type: map_at_5
2156
+ value: 60.159
2157
+ - type: mrr_at_1
2158
+ value: 53.667
2159
+ - type: mrr_at_10
2160
+ value: 62.74999999999999
2161
+ - type: mrr_at_100
2162
+ value: 63.39399999999999
2163
+ - type: mrr_at_1000
2164
+ value: 63.425
2165
+ - type: mrr_at_3
2166
+ value: 61.389
2167
+ - type: mrr_at_5
2168
+ value: 61.989000000000004
2169
+ - type: ndcg_at_1
2170
+ value: 53.667
2171
+ - type: ndcg_at_10
2172
+ value: 65.596
2173
+ - type: ndcg_at_100
2174
+ value: 68.906
2175
+ - type: ndcg_at_1000
2176
+ value: 69.78999999999999
2177
+ - type: ndcg_at_3
2178
+ value: 62.261
2179
+ - type: ndcg_at_5
2180
+ value: 63.453
2181
+ - type: precision_at_1
2182
+ value: 53.667
2183
+ - type: precision_at_10
2184
+ value: 8.667
2185
+ - type: precision_at_100
2186
+ value: 1.04
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 24.556
2191
+ - type: precision_at_5
2192
+ value: 15.6
2193
+ - type: recall_at_1
2194
+ value: 51.193999999999996
2195
+ - type: recall_at_10
2196
+ value: 77.156
2197
+ - type: recall_at_100
2198
+ value: 91.43299999999999
2199
+ - type: recall_at_1000
2200
+ value: 98.333
2201
+ - type: recall_at_3
2202
+ value: 67.994
2203
+ - type: recall_at_5
2204
+ value: 71.14399999999999
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.81485148514851
2216
+ - type: cos_sim_ap
2217
+ value: 95.28896513388551
2218
+ - type: cos_sim_f1
2219
+ value: 90.43478260869566
2220
+ - type: cos_sim_precision
2221
+ value: 92.56544502617801
2222
+ - type: cos_sim_recall
2223
+ value: 88.4
2224
+ - type: dot_accuracy
2225
+ value: 99.30594059405941
2226
+ - type: dot_ap
2227
+ value: 61.6432597455472
2228
+ - type: dot_f1
2229
+ value: 59.46481665014866
2230
+ - type: dot_precision
2231
+ value: 58.93909626719057
2232
+ - type: dot_recall
2233
+ value: 60.0
2234
+ - type: euclidean_accuracy
2235
+ value: 99.81980198019802
2236
+ - type: euclidean_ap
2237
+ value: 95.21411049527
2238
+ - type: euclidean_f1
2239
+ value: 91.06090373280944
2240
+ - type: euclidean_precision
2241
+ value: 89.47876447876449
2242
+ - type: euclidean_recall
2243
+ value: 92.7
2244
+ - type: manhattan_accuracy
2245
+ value: 99.81782178217821
2246
+ - type: manhattan_ap
2247
+ value: 95.32449994414968
2248
+ - type: manhattan_f1
2249
+ value: 90.86395233366436
2250
+ - type: manhattan_precision
2251
+ value: 90.23668639053254
2252
+ - type: manhattan_recall
2253
+ value: 91.5
2254
+ - type: max_accuracy
2255
+ value: 99.81980198019802
2256
+ - type: max_ap
2257
+ value: 95.32449994414968
2258
+ - type: max_f1
2259
+ value: 91.06090373280944
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 59.08045614613064
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 30.297802606804748
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 49.12801740706292
2293
+ - type: mrr
2294
+ value: 50.05592956879722
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 23.380995453661917
2306
+ - type: cos_sim_spearman
2307
+ value: 24.941761858688917
2308
+ - type: dot_pearson
2309
+ value: 24.930577961642413
2310
+ - type: dot_spearman
2311
+ value: 24.804715835064492
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.243
2323
+ - type: map_at_10
2324
+ value: 1.886
2325
+ - type: map_at_100
2326
+ value: 10.040000000000001
2327
+ - type: map_at_1000
2328
+ value: 23.768
2329
+ - type: map_at_3
2330
+ value: 0.674
2331
+ - type: map_at_5
2332
+ value: 1.079
2333
+ - type: mrr_at_1
2334
+ value: 88.0
2335
+ - type: mrr_at_10
2336
+ value: 93.667
2337
+ - type: mrr_at_100
2338
+ value: 93.667
2339
+ - type: mrr_at_1000
2340
+ value: 93.667
2341
+ - type: mrr_at_3
2342
+ value: 93.667
2343
+ - type: mrr_at_5
2344
+ value: 93.667
2345
+ - type: ndcg_at_1
2346
+ value: 83.0
2347
+ - type: ndcg_at_10
2348
+ value: 76.777
2349
+ - type: ndcg_at_100
2350
+ value: 55.153
2351
+ - type: ndcg_at_1000
2352
+ value: 47.912
2353
+ - type: ndcg_at_3
2354
+ value: 81.358
2355
+ - type: ndcg_at_5
2356
+ value: 80.74799999999999
2357
+ - type: precision_at_1
2358
+ value: 88.0
2359
+ - type: precision_at_10
2360
+ value: 80.80000000000001
2361
+ - type: precision_at_100
2362
+ value: 56.02
2363
+ - type: precision_at_1000
2364
+ value: 21.51
2365
+ - type: precision_at_3
2366
+ value: 86.0
2367
+ - type: precision_at_5
2368
+ value: 86.0
2369
+ - type: recall_at_1
2370
+ value: 0.243
2371
+ - type: recall_at_10
2372
+ value: 2.0869999999999997
2373
+ - type: recall_at_100
2374
+ value: 13.014000000000001
2375
+ - type: recall_at_1000
2376
+ value: 44.433
2377
+ - type: recall_at_3
2378
+ value: 0.6910000000000001
2379
+ - type: recall_at_5
2380
+ value: 1.1440000000000001
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 3.066
2392
+ - type: map_at_10
2393
+ value: 10.615
2394
+ - type: map_at_100
2395
+ value: 16.463
2396
+ - type: map_at_1000
2397
+ value: 17.815
2398
+ - type: map_at_3
2399
+ value: 5.7860000000000005
2400
+ - type: map_at_5
2401
+ value: 7.353999999999999
2402
+ - type: mrr_at_1
2403
+ value: 38.775999999999996
2404
+ - type: mrr_at_10
2405
+ value: 53.846000000000004
2406
+ - type: mrr_at_100
2407
+ value: 54.37
2408
+ - type: mrr_at_1000
2409
+ value: 54.37
2410
+ - type: mrr_at_3
2411
+ value: 48.980000000000004
2412
+ - type: mrr_at_5
2413
+ value: 51.735
2414
+ - type: ndcg_at_1
2415
+ value: 34.694
2416
+ - type: ndcg_at_10
2417
+ value: 26.811
2418
+ - type: ndcg_at_100
2419
+ value: 37.342999999999996
2420
+ - type: ndcg_at_1000
2421
+ value: 47.964
2422
+ - type: ndcg_at_3
2423
+ value: 30.906
2424
+ - type: ndcg_at_5
2425
+ value: 27.77
2426
+ - type: precision_at_1
2427
+ value: 38.775999999999996
2428
+ - type: precision_at_10
2429
+ value: 23.878
2430
+ - type: precision_at_100
2431
+ value: 7.632999999999999
2432
+ - type: precision_at_1000
2433
+ value: 1.469
2434
+ - type: precision_at_3
2435
+ value: 31.973000000000003
2436
+ - type: precision_at_5
2437
+ value: 26.939
2438
+ - type: recall_at_1
2439
+ value: 3.066
2440
+ - type: recall_at_10
2441
+ value: 17.112
2442
+ - type: recall_at_100
2443
+ value: 47.723
2444
+ - type: recall_at_1000
2445
+ value: 79.50500000000001
2446
+ - type: recall_at_3
2447
+ value: 6.825
2448
+ - type: recall_at_5
2449
+ value: 9.584
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 72.76460000000002
2461
+ - type: ap
2462
+ value: 14.944240012137053
2463
+ - type: f1
2464
+ value: 55.89805777266571
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 63.30503678551217
2476
+ - type: f1
2477
+ value: 63.57492701921179
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 37.51066495006874
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 86.07021517553794
2500
+ - type: cos_sim_ap
2501
+ value: 74.15520712370555
2502
+ - type: cos_sim_f1
2503
+ value: 68.64321608040201
2504
+ - type: cos_sim_precision
2505
+ value: 65.51558752997602
2506
+ - type: cos_sim_recall
2507
+ value: 72.0844327176781
2508
+ - type: dot_accuracy
2509
+ value: 80.23484532395541
2510
+ - type: dot_ap
2511
+ value: 54.298763810214176
2512
+ - type: dot_f1
2513
+ value: 53.22254659779924
2514
+ - type: dot_precision
2515
+ value: 46.32525410476936
2516
+ - type: dot_recall
2517
+ value: 62.532981530343015
2518
+ - type: euclidean_accuracy
2519
+ value: 86.04637301066937
2520
+ - type: euclidean_ap
2521
+ value: 73.85333854233123
2522
+ - type: euclidean_f1
2523
+ value: 68.77723660599845
2524
+ - type: euclidean_precision
2525
+ value: 66.87437686939182
2526
+ - type: euclidean_recall
2527
+ value: 70.79155672823218
2528
+ - type: manhattan_accuracy
2529
+ value: 85.98676759849795
2530
+ - type: manhattan_ap
2531
+ value: 73.56016090035973
2532
+ - type: manhattan_f1
2533
+ value: 68.48878539036647
2534
+ - type: manhattan_precision
2535
+ value: 63.9505607690547
2536
+ - type: manhattan_recall
2537
+ value: 73.7203166226913
2538
+ - type: max_accuracy
2539
+ value: 86.07021517553794
2540
+ - type: max_ap
2541
+ value: 74.15520712370555
2542
+ - type: max_f1
2543
+ value: 68.77723660599845
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 88.92769821865176
2555
+ - type: cos_sim_ap
2556
+ value: 85.78879502899773
2557
+ - type: cos_sim_f1
2558
+ value: 78.14414083990464
2559
+ - type: cos_sim_precision
2560
+ value: 74.61651607480563
2561
+ - type: cos_sim_recall
2562
+ value: 82.0218663381583
2563
+ - type: dot_accuracy
2564
+ value: 84.95750378390964
2565
+ - type: dot_ap
2566
+ value: 75.80219641857563
2567
+ - type: dot_f1
2568
+ value: 70.13966179585681
2569
+ - type: dot_precision
2570
+ value: 65.71140262361251
2571
+ - type: dot_recall
2572
+ value: 75.20788420080073
2573
+ - type: euclidean_accuracy
2574
+ value: 88.93546008460433
2575
+ - type: euclidean_ap
2576
+ value: 85.72056428301667
2577
+ - type: euclidean_f1
2578
+ value: 78.14387902598124
2579
+ - type: euclidean_precision
2580
+ value: 75.3376688344172
2581
+ - type: euclidean_recall
2582
+ value: 81.16723129042192
2583
+ - type: manhattan_accuracy
2584
+ value: 88.96262661543835
2585
+ - type: manhattan_ap
2586
+ value: 85.76605136314335
2587
+ - type: manhattan_f1
2588
+ value: 78.26696165191743
2589
+ - type: manhattan_precision
2590
+ value: 75.0990659496179
2591
+ - type: manhattan_recall
2592
+ value: 81.71388974437943
2593
+ - type: max_accuracy
2594
+ value: 88.96262661543835
2595
+ - type: max_ap
2596
+ value: 85.78879502899773
2597
+ - type: max_f1
2598
+ value: 78.26696165191743
2599
+ ---
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9472cafc9901ac8c8f8d75f492398797020111dd5c8c4af142ab4bf211ea8e33
3
+ size 133518577
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "amlt/1109_tnlrv3_bs32k_ft/all_kd_ft", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff