eliseobao commited on
Commit
ac57142
·
verified ·
1 Parent(s): 1b233c6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +221 -0
README.md ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - meta-llama/Llama-3.1-8B-Instruct
4
+ license: llama3.1
5
+ language:
6
+ - gl
7
+ metrics:
8
+ - bleu
9
+ - rouge
10
+ model-index:
11
+ - name: Llama-3.1-8B-Instruct-Galician
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ dataset:
16
+ name: alpaca_data_galician
17
+ type: alpaca_data_galician
18
+ metrics:
19
+ - name: bleu
20
+ type: bleu-4
21
+ value: 64.59
22
+ - name: rouge
23
+ type: rouge-l
24
+ value: 21.84
25
+ ---
26
+
27
+ # Llama-3.1-8B-Instruct-Galician
28
+
29
+ This model is a fine-tuned version of [models/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/models/Meta-Llama-3.1-8B-Instruct) on the [CorpusNós](https://zenodo.org/records/11655219) dataset.
30
+
31
+ ## Model Details
32
+
33
+ ### Model Description
34
+
35
+ <!-- Provide a longer summary of what this model is. -->
36
+
37
+
38
+
39
+ - **Developed by:** [More Information Needed]
40
+ - **Funded by [optional]:** [More Information Needed]
41
+ - **Shared by [optional]:** [More Information Needed]
42
+ - **Model type:** [More Information Needed]
43
+ - **Language(s) (NLP):** [More Information Needed]
44
+ - **License:** [More Information Needed]
45
+ - **Finetuned from model [optional]:** [More Information Needed]
46
+
47
+ ### Model Sources [optional]
48
+
49
+ <!-- Provide the basic links for the model. -->
50
+
51
+ - **Repository:** [More Information Needed]
52
+ - **Paper [optional]:** [More Information Needed]
53
+ - **Demo [optional]:** [More Information Needed]
54
+
55
+ ## Uses
56
+
57
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
58
+
59
+ ### Direct Use
60
+
61
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ### Downstream Use [optional]
66
+
67
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Out-of-Scope Use
72
+
73
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
74
+
75
+ [More Information Needed]
76
+
77
+ ## Bias, Risks, and Limitations
78
+
79
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Recommendations
84
+
85
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
86
+
87
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
88
+
89
+ ## How to Get Started with the Model
90
+
91
+ Use the code below to get started with the model.
92
+
93
+ [More Information Needed]
94
+
95
+ ## Training Details
96
+
97
+ ### Training Data
98
+
99
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ### Training Procedure
104
+
105
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
106
+
107
+ #### Preprocessing [optional]
108
+
109
+ [More Information Needed]
110
+
111
+
112
+ #### Training Hyperparameters
113
+
114
+ The following hyperparameters were used during training:
115
+ - learning_rate: 0.0001
116
+ - train_batch_size: 32
117
+ - eval_batch_size: 1
118
+ - seed: 42
119
+ - distributed_type: multi-GPU
120
+ - num_devices: 4
121
+ - gradient_accumulation_steps: 2
122
+ - total_train_batch_size: 256
123
+ - total_eval_batch_size: 4
124
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
125
+ - lr_scheduler_type: cosine
126
+ - lr_scheduler_warmup_ratio: 0.1
127
+ - num_epochs: 1.0
128
+
129
+ #### Training results
130
+
131
+ | Training Loss | Epoch | Step | Validation Loss |
132
+ |:-------------:|:------:|:----:|:---------------:|
133
+ | 2.0606 | 0.1682 | 900 | 2.0613 |
134
+ | 1.9898 | 0.3363 | 1800 | 1.9929 |
135
+ | 1.9847 | 0.5045 | 2700 | 1.9613 |
136
+ | 1.9577 | 0.6726 | 3600 | 1.9445 |
137
+ | 1.9287 | 0.8408 | 4500 | 1.9368 |
138
+
139
+ #### Speeds, Sizes, Times [optional]
140
+
141
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Evaluation
146
+
147
+ <!-- This section describes the evaluation protocols and provides the results. -->
148
+
149
+ ### Testing Data, Factors & Metrics
150
+
151
+ #### Testing Data
152
+
153
+ <!-- This should link to a Dataset Card if possible. -->
154
+
155
+ [More Information Needed]
156
+
157
+ #### Factors
158
+
159
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
160
+
161
+ [More Information Needed]
162
+
163
+ #### Metrics
164
+
165
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
166
+
167
+ [More Information Needed]
168
+
169
+ ### Results
170
+
171
+ [More Information Needed]
172
+
173
+ #### Summary
174
+
175
+
176
+
177
+ ## Model Examination [optional]
178
+
179
+ <!-- Relevant interpretability work for the model goes here -->
180
+
181
+ [More Information Needed]
182
+
183
+ ## Environmental Impact
184
+
185
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
186
+
187
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
188
+
189
+ - **Hardware Type:** [More Information Needed]
190
+ - **Hours used:** [More Information Needed]
191
+ - **Cloud Provider:** [More Information Needed]
192
+ - **Compute Region:** [More Information Needed]
193
+ - **Carbon Emitted:** [More Information Needed]
194
+
195
+ ## Technical Specifications [optional]
196
+
197
+ ### Model Architecture and Objective
198
+
199
+ [More Information Needed]
200
+
201
+ ### Compute Infrastructure
202
+
203
+ [More Information Needed]
204
+
205
+ #### Hardware
206
+
207
+ [More Information Needed]
208
+
209
+ #### Software
210
+
211
+ - PEFT 0.12.0
212
+ - Transformers 4.44.2
213
+ - Pytorch 2.4.0+cu121
214
+ - Datasets 2.21.0
215
+ - Tokenizers 0.19.1
216
+
217
+ ## Citation
218
+
219
+ **BibTeX:**
220
+
221
+ [More Information Needed]