ironbar commited on
Commit
199c7f1
·
1 Parent(s): 04b00ac

trying to upload my first model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 282.04 +/- 17.17
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>", "_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651906465.549593, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPVS7zs++270jdoPJ7kaDyHFEY9pt5FvQAAgD8AAIA/bd8dvmR3wD7GLrM+VkvHvtoxEj1u8xQ+AAAAAAAAAADNRfO85LiRPeprFT6SYci+Sy9rPeDoKTwAAAAAAAAAAGbuXT37Po4/gBfmPRO5EL9ZVCg+y72QPQAAAAAAAAAAmmwTvac4qz+Vlmi+rUvQvpUKor2YuVa+AAAAAAAAAACzJFe+REK1PgI+BT9ddN2+CDCRvUxtoj4AAAAAAAAAABr90D1r8To/EaGtvCeX+r4Qjg4+/YdwvQAAAAAAAAAAMxLtvEX/kj5aLM+89NjTvuJEwr3c8hU9AAAAAAAAAABTJgs+hz8jPxwaKr46eOC+2BzMPaK8KL4AAAAAAAAAAM04lLt2xxy82rANPPpSpjz5x4i9lwGJPQAAgD8AAIA/c/5Eviyqlz8K9Ae/JXwKv9u6tL6AkWG+AAAAAAAAAADmBAM9rnW2upDHDrWLKBuwiFm1ufP8YTQAAIA/AACAPxqH1z2/h8E+T6Szvt63xr480qm9ONLevQAAAAAAAAAAmuBDvb8agD7wUgI+3Qiqvqg/cLx2yow9AAAAAAAAAADNFKI95zsjPiIXZL7eG9m+fvAXvh8dBb0AAAAAAAAAALOTJj3dzAo/E7KhvqLm/L5QCKi9uwnwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIH9pUd/YcECUhpRSlIwBbJRL0owBdJRHQLHDxZA6dUd1fZQoaAZoCWgPQwgjaTf6mC5zQJSGlFKUaBVLwmgWR0Cxw9QmReTndX2UKGgGaAloD0MI0Amhg65Mc0CUhpRSlGgVS+FoFkdAscPbhuO0cHV9lChoBmgJaA9DCGn9LQE49nFAlIaUUpRoFUvlaBZHQLHD4yU9pyp1fZQoaAZoCWgPQwgrvTYbK/xwQJSGlFKUaBVLyGgWR0Cxw+drftQbdX2UKGgGaAloD0MIJXSXxNklcUCUhpRSlGgVS+FoFkdAscQEP1+RYHV9lChoBmgJaA9DCFVpi2s88HJAlIaUUpRoFUvxaBZHQLHEVBguyu91fZQoaAZoCWgPQwipaoKouxZwQJSGlFKUaBVLyGgWR0CxxGzB68g7dX2UKGgGaAloD0MILQq7KPpVc0CUhpRSlGgVS95oFkdAscSlKf4AS3V9lChoBmgJaA9DCHXo9LzbJXBAlIaUUpRoFUvdaBZHQLHEw58BuGd1fZQoaAZoCWgPQwiAuoEC78lSQJSGlFKUaBVLsmgWR0CxxNSbUgB+dX2UKGgGaAloD0MI6/6xEB1xbkCUhpRSlGgVS+ZoFkdAscTgKOT7mHV9lChoBmgJaA9DCMufbwtWHHNAlIaUUpRoFU2qAWgWR0CxxPkORT0hdX2UKGgGaAloD0MIEK/rF+y6c0CUhpRSlGgVS+9oFkdAscUPm9xp+XV9lChoBmgJaA9DCLxXrUw4fXBAlIaUUpRoFUu/aBZHQLHFEm+0w8J1fZQoaAZoCWgPQwg49YHkXVBwQJSGlFKUaBVLwWgWR0CxxRwBxPwedX2UKGgGaAloD0MIyR02kVlOcUCUhpRSlGgVS8toFkdAscU11FH8THV9lChoBmgJaA9DCFn5ZTCGyXFAlIaUUpRoFUvhaBZHQLHFOCwr1/V1fZQoaAZoCWgPQwilZ3qJsVRyQJSGlFKUaBVL1mgWR0CxxWTjFQ2udX2UKGgGaAloD0MIjE0rhQC1ckCUhpRSlGgVTQMBaBZHQLHFZJ2MbWF1fZQoaAZoCWgPQwj5u3fUGGl0QJSGlFKUaBVL9mgWR0CxxXJm/WUbdX2UKGgGaAloD0MIA5fHmtHncUCUhpRSlGgVS/VoFkdAscXcn3L3bnV9lChoBmgJaA9DCFtbeF7qfnFAlIaUUpRoFUvpaBZHQLHF4ZSNwR51fZQoaAZoCWgPQwgGS3UBr6JyQJSGlFKUaBVLzmgWR0CxxgT7Q9iddX2UKGgGaAloD0MIhUIEHEIdcUCUhpRSlGgVS8toFkdAscYbCCSRsHV9lChoBmgJaA9DCAYTfxT1/nJAlIaUUpRoFUvzaBZHQLHKynZ00WN1fZQoaAZoCWgPQwj2B8pt++5tQJSGlFKUaBVL5mgWR0CxyuEAxSHedX2UKGgGaAloD0MIw33k1qQScECUhpRSlGgVS8hoFkdAscr4JjUd73V9lChoBmgJaA9DCF3g8liz1G5AlIaUUpRoFUvWaBZHQLHLAffoA4p1fZQoaAZoCWgPQwiztb5IqHxxQJSGlFKUaBVLyWgWR0CxyxiYgJTmdX2UKGgGaAloD0MIwYwpWGNfb0CUhpRSlGgVS9VoFkdAscsvVVghKXV9lChoBmgJaA9DCFeTp6ymwnNAlIaUUpRoFUv0aBZHQLHLOI+GGmF1fZQoaAZoCWgPQwg2HQHcbOhyQJSGlFKUaBVLy2gWR0Cxy0770nPWdX2UKGgGaAloD0MI9DXLZSMTckCUhpRSlGgVS95oFkdAsctwyBTXKHV9lChoBmgJaA9DCI/hsZ+F6HNAlIaUUpRoFUv+aBZHQLHLtyIYWLx1fZQoaAZoCWgPQwgdkloo2cpxQJSGlFKUaBVL3mgWR0Cxy/8Kb8WLdX2UKGgGaAloD0MIQKVKlL2FcECUhpRSlGgVS8toFkdAscwKAmReTnV9lChoBmgJaA9DCFWEm4yqJ3FAlIaUUpRoFUvSaBZHQLHMMeD3/Px1fZQoaAZoCWgPQwiD91W5UMhxQJSGlFKUaBVL9mgWR0CxzDVQIldDdX2UKGgGaAloD0MI4EigwSY/ckCUhpRSlGgVS85oFkdAscw5cv/R3XV9lChoBmgJaA9DCJhp+1cWxnFAlIaUUpRoFUvCaBZHQLHMU2TxG2F1fZQoaAZoCWgPQwjaBBiW/3hxQJSGlFKUaBVNpgFoFkdAscxf90ihWnV9lChoBmgJaA9DCMXnTrA/LnNAlIaUUpRoFUvbaBZHQLHMan1WbPR1fZQoaAZoCWgPQwhX68TlOJVyQJSGlFKUaBVLxGgWR0CxzHkgwGnodX2UKGgGaAloD0MI6Zs0DQq7cECUhpRSlGgVS9toFkdAscyIKqn3tnV9lChoBmgJaA9DCOEp5Eq9129AlIaUUpRoFUvCaBZHQLHMp/dZaFF1fZQoaAZoCWgPQwgwhJz3/49vQJSGlFKUaBVL6mgWR0CxzMooAn2JdX2UKGgGaAloD0MI6Zs0DUr6cUCUhpRSlGgVS+1oFkdAsczXeHi3onV9lChoBmgJaA9DCAlszsHzx3JAlIaUUpRoFUvbaBZHQLHM7z+m3vx1fZQoaAZoCWgPQwjVXG4w1CpYQJSGlFKUaBVN6ANoFkdAsc0H/+85CHV9lChoBmgJaA9DCBiWP9/W5nFAlIaUUpRoFUvcaBZHQLHNKtLL6k91fZQoaAZoCWgPQwjFdCFWP6hxQJSGlFKUaBVLwWgWR0CxzTmHk92YdX2UKGgGaAloD0MIyy+DMWLScUCUhpRSlGgVS75oFkdAsc1cRUWEb3V9lChoBmgJaA9DCF4vTRGgL3FAlIaUUpRoFUvGaBZHQLHNYqI7/4t1fZQoaAZoCWgPQwiUSnhC70dyQJSGlFKUaBVL22gWR0CxzYKeK8+SdX2UKGgGaAloD0MIe9tMhbjickCUhpRSlGgVS/JoFkdAsc2FdKNADHV9lChoBmgJaA9DCCSYamYtKnJAlIaUUpRoFUvRaBZHQLHNi29+PR11fZQoaAZoCWgPQwg8+IkDaP9vQJSGlFKUaBVL2GgWR0CxzZv4yoGZdX2UKGgGaAloD0MIjSRBuMJWc0CUhpRSlGgVS8hoFkdAsc2n04BFNXV9lChoBmgJaA9DCBtLWBtjDnFAlIaUUpRoFUvWaBZHQLHNrXarWAh1fZQoaAZoCWgPQwhf8GlO3ilzQJSGlFKUaBVL42gWR0CxzbHZ9NN8dX2UKGgGaAloD0MI73VSXxZDcUCUhpRSlGgVS8ZoFkdAsc2/t7a7E3V9lChoBmgJaA9DCIo8Sbom7HBAlIaUUpRoFUvJaBZHQLHN3fw7T2F1fZQoaAZoCWgPQwiFJoklJWxyQJSGlFKUaBVLwmgWR0Cxzd9PgvUSdX2UKGgGaAloD0MItFn1uVqfbkCUhpRSlGgVS8doFkdAsc34ePq9oXV9lChoBmgJaA9DCA9HV+kukXNAlIaUUpRoFUvUaBZHQLHOIanaWX11fZQoaAZoCWgPQwjNkgA1tSdRQJSGlFKUaBVLjmgWR0CxzkdI065odX2UKGgGaAloD0MIK9zykZTcckCUhpRSlGgVS9loFkdAsc5c85jpcHV9lChoBmgJaA9DCGb4TzdQuHNAlIaUUpRoFUv5aBZHQLHOfV0tAcF1fZQoaAZoCWgPQwhMHHkg8lpzQJSGlFKUaBVL3mgWR0CxzoyZOSGKdX2UKGgGaAloD0MIt0WZDfLkcUCUhpRSlGgVS8doFkdAsc6VHMEA53V9lChoBmgJaA9DCJxpwvaTV3BAlIaUUpRoFUvXaBZHQLHOqa/RE4N1fZQoaAZoCWgPQwh6yJQPwVJyQJSGlFKUaBVLzmgWR0CxzreZb6gvdX2UKGgGaAloD0MIMbQ6OQNLckCUhpRSlGgVS9doFkdAsc7SLFXJYHV9lChoBmgJaA9DCPjDz3+PSnFAlIaUUpRoFU0LAWgWR0CxztQ/gR9PdX2UKGgGaAloD0MIjE0rhYBcdECUhpRSlGgVS/NoFkdAsc8CwC8vmHV9lChoBmgJaA9DCCkg7X9A6XJAlIaUUpRoFUvpaBZHQLHPBDiwSrZ1fZQoaAZoCWgPQwi4PNaMDJZzQJSGlFKUaBVL12gWR0CxzwyCnP3SdX2UKGgGaAloD0MIR7Bx/Tvhc0CUhpRSlGgVS9xoFkdAsc8U4hllLHV9lChoBmgJaA9DCFQZxt2g2nFAlIaUUpRoFUvcaBZHQLHPL9eyAx11fZQoaAZoCWgPQwgf963WCeRxQJSGlFKUaBVLu2gWR0Cxz0+UliSadX2UKGgGaAloD0MIT7D/OrfuckCUhpRSlGgVS9hoFkdAsc9SoYNy53V9lChoBmgJaA9DCExV2uIa+W9AlIaUUpRoFUvPaBZHQLHPgy7PIGR1fZQoaAZoCWgPQwiN0qV/SRhSQJSGlFKUaBVLsmgWR0Cxz6QSi/O/dX2UKGgGaAloD0MIb7ckB2wbcECUhpRSlGgVS9JoFkdAsc+mevpyInV9lChoBmgJaA9DCKEsfH2tsG9AlIaUUpRoFUvQaBZHQLHPsvMbFS91fZQoaAZoCWgPQwgjh4ibk45zQJSGlFKUaBVL3GgWR0Cxz80gbIcSdX2UKGgGaAloD0MIixh2GFO7ckCUhpRSlGgVS9xoFkdAsdAMAMlTnHV9lChoBmgJaA9DCBU6r7ELNHFAlIaUUpRoFUvjaBZHQLHQGRbr1NB1fZQoaAZoCWgPQwgUzm4tU2xzQJSGlFKUaBVL/GgWR0Cx0CFpGnXNdX2UKGgGaAloD0MIjrJ+MzGMb0CUhpRSlGgVS8loFkdAsdAmGCZnc3V9lChoBmgJaA9DCAzohTsXZ3JAlIaUUpRoFUvHaBZHQLHQNi704BF1fZQoaAZoCWgPQwh8X1yq0nZvQJSGlFKUaBVL1WgWR0Cx0EHEVFhHdX2UKGgGaAloD0MIxhft8QIOckCUhpRSlGgVS9toFkdAsdBB5a/yoXV9lChoBmgJaA9DCPyqXKj8QnNAlIaUUpRoFU3aAWgWR0Cx0EvFJg9edX2UKGgGaAloD0MIf1AXKRQJcECUhpRSlGgVS9JoFkdAsdBe45Lh73V9lChoBmgJaA9DCIoD6Pc9YnFAlIaUUpRoFUu/aBZHQLHQZbaAWi11fZQoaAZoCWgPQwg5KjdRyxFvQJSGlFKUaBVLxWgWR0Cx0JiDqW1MdX2UKGgGaAloD0MIUG9GzZdec0CUhpRSlGgVS+xoFkdAsdCdpAUtZnV9lChoBmgJaA9DCDfHuU14/XFAlIaUUpRoFUvAaBZHQLHQsIq9XcR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 988, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc346e49d16a637751b33a5b6d03269ca5e4d9551ec487e59e34d76ecd5bafa
3
+ size 143989
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651906465.549593,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPVS7zs++270jdoPJ7kaDyHFEY9pt5FvQAAgD8AAIA/bd8dvmR3wD7GLrM+VkvHvtoxEj1u8xQ+AAAAAAAAAADNRfO85LiRPeprFT6SYci+Sy9rPeDoKTwAAAAAAAAAAGbuXT37Po4/gBfmPRO5EL9ZVCg+y72QPQAAAAAAAAAAmmwTvac4qz+Vlmi+rUvQvpUKor2YuVa+AAAAAAAAAACzJFe+REK1PgI+BT9ddN2+CDCRvUxtoj4AAAAAAAAAABr90D1r8To/EaGtvCeX+r4Qjg4+/YdwvQAAAAAAAAAAMxLtvEX/kj5aLM+89NjTvuJEwr3c8hU9AAAAAAAAAABTJgs+hz8jPxwaKr46eOC+2BzMPaK8KL4AAAAAAAAAAM04lLt2xxy82rANPPpSpjz5x4i9lwGJPQAAgD8AAIA/c/5Eviyqlz8K9Ae/JXwKv9u6tL6AkWG+AAAAAAAAAADmBAM9rnW2upDHDrWLKBuwiFm1ufP8YTQAAIA/AACAPxqH1z2/h8E+T6Szvt63xr480qm9ONLevQAAAAAAAAAAmuBDvb8agD7wUgI+3Qiqvqg/cLx2yow9AAAAAAAAAADNFKI95zsjPiIXZL7eG9m+fvAXvh8dBb0AAAAAAAAAALOTJj3dzAo/E7KhvqLm/L5QCKi9uwnwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIH9pUd/YcECUhpRSlIwBbJRL0owBdJRHQLHDxZA6dUd1fZQoaAZoCWgPQwgjaTf6mC5zQJSGlFKUaBVLwmgWR0Cxw9QmReTndX2UKGgGaAloD0MI0Amhg65Mc0CUhpRSlGgVS+FoFkdAscPbhuO0cHV9lChoBmgJaA9DCGn9LQE49nFAlIaUUpRoFUvlaBZHQLHD4yU9pyp1fZQoaAZoCWgPQwgrvTYbK/xwQJSGlFKUaBVLyGgWR0Cxw+drftQbdX2UKGgGaAloD0MIJXSXxNklcUCUhpRSlGgVS+FoFkdAscQEP1+RYHV9lChoBmgJaA9DCFVpi2s88HJAlIaUUpRoFUvxaBZHQLHEVBguyu91fZQoaAZoCWgPQwipaoKouxZwQJSGlFKUaBVLyGgWR0CxxGzB68g7dX2UKGgGaAloD0MILQq7KPpVc0CUhpRSlGgVS95oFkdAscSlKf4AS3V9lChoBmgJaA9DCHXo9LzbJXBAlIaUUpRoFUvdaBZHQLHEw58BuGd1fZQoaAZoCWgPQwiAuoEC78lSQJSGlFKUaBVLsmgWR0CxxNSbUgB+dX2UKGgGaAloD0MI6/6xEB1xbkCUhpRSlGgVS+ZoFkdAscTgKOT7mHV9lChoBmgJaA9DCMufbwtWHHNAlIaUUpRoFU2qAWgWR0CxxPkORT0hdX2UKGgGaAloD0MIEK/rF+y6c0CUhpRSlGgVS+9oFkdAscUPm9xp+XV9lChoBmgJaA9DCLxXrUw4fXBAlIaUUpRoFUu/aBZHQLHFEm+0w8J1fZQoaAZoCWgPQwg49YHkXVBwQJSGlFKUaBVLwWgWR0CxxRwBxPwedX2UKGgGaAloD0MIyR02kVlOcUCUhpRSlGgVS8toFkdAscU11FH8THV9lChoBmgJaA9DCFn5ZTCGyXFAlIaUUpRoFUvhaBZHQLHFOCwr1/V1fZQoaAZoCWgPQwilZ3qJsVRyQJSGlFKUaBVL1mgWR0CxxWTjFQ2udX2UKGgGaAloD0MIjE0rhQC1ckCUhpRSlGgVTQMBaBZHQLHFZJ2MbWF1fZQoaAZoCWgPQwj5u3fUGGl0QJSGlFKUaBVL9mgWR0CxxXJm/WUbdX2UKGgGaAloD0MIA5fHmtHncUCUhpRSlGgVS/VoFkdAscXcn3L3bnV9lChoBmgJaA9DCFtbeF7qfnFAlIaUUpRoFUvpaBZHQLHF4ZSNwR51fZQoaAZoCWgPQwgGS3UBr6JyQJSGlFKUaBVLzmgWR0CxxgT7Q9iddX2UKGgGaAloD0MIhUIEHEIdcUCUhpRSlGgVS8toFkdAscYbCCSRsHV9lChoBmgJaA9DCAYTfxT1/nJAlIaUUpRoFUvzaBZHQLHKynZ00WN1fZQoaAZoCWgPQwj2B8pt++5tQJSGlFKUaBVL5mgWR0CxyuEAxSHedX2UKGgGaAloD0MIw33k1qQScECUhpRSlGgVS8hoFkdAscr4JjUd73V9lChoBmgJaA9DCF3g8liz1G5AlIaUUpRoFUvWaBZHQLHLAffoA4p1fZQoaAZoCWgPQwiztb5IqHxxQJSGlFKUaBVLyWgWR0CxyxiYgJTmdX2UKGgGaAloD0MIwYwpWGNfb0CUhpRSlGgVS9VoFkdAscsvVVghKXV9lChoBmgJaA9DCFeTp6ymwnNAlIaUUpRoFUv0aBZHQLHLOI+GGmF1fZQoaAZoCWgPQwg2HQHcbOhyQJSGlFKUaBVLy2gWR0Cxy0770nPWdX2UKGgGaAloD0MI9DXLZSMTckCUhpRSlGgVS95oFkdAsctwyBTXKHV9lChoBmgJaA9DCI/hsZ+F6HNAlIaUUpRoFUv+aBZHQLHLtyIYWLx1fZQoaAZoCWgPQwgdkloo2cpxQJSGlFKUaBVL3mgWR0Cxy/8Kb8WLdX2UKGgGaAloD0MIQKVKlL2FcECUhpRSlGgVS8toFkdAscwKAmReTnV9lChoBmgJaA9DCFWEm4yqJ3FAlIaUUpRoFUvSaBZHQLHMMeD3/Px1fZQoaAZoCWgPQwiD91W5UMhxQJSGlFKUaBVL9mgWR0CxzDVQIldDdX2UKGgGaAloD0MI4EigwSY/ckCUhpRSlGgVS85oFkdAscw5cv/R3XV9lChoBmgJaA9DCJhp+1cWxnFAlIaUUpRoFUvCaBZHQLHMU2TxG2F1fZQoaAZoCWgPQwjaBBiW/3hxQJSGlFKUaBVNpgFoFkdAscxf90ihWnV9lChoBmgJaA9DCMXnTrA/LnNAlIaUUpRoFUvbaBZHQLHMan1WbPR1fZQoaAZoCWgPQwhX68TlOJVyQJSGlFKUaBVLxGgWR0CxzHkgwGnodX2UKGgGaAloD0MI6Zs0DQq7cECUhpRSlGgVS9toFkdAscyIKqn3tnV9lChoBmgJaA9DCOEp5Eq9129AlIaUUpRoFUvCaBZHQLHMp/dZaFF1fZQoaAZoCWgPQwgwhJz3/49vQJSGlFKUaBVL6mgWR0CxzMooAn2JdX2UKGgGaAloD0MI6Zs0DUr6cUCUhpRSlGgVS+1oFkdAsczXeHi3onV9lChoBmgJaA9DCAlszsHzx3JAlIaUUpRoFUvbaBZHQLHM7z+m3vx1fZQoaAZoCWgPQwjVXG4w1CpYQJSGlFKUaBVN6ANoFkdAsc0H/+85CHV9lChoBmgJaA9DCBiWP9/W5nFAlIaUUpRoFUvcaBZHQLHNKtLL6k91fZQoaAZoCWgPQwjFdCFWP6hxQJSGlFKUaBVLwWgWR0CxzTmHk92YdX2UKGgGaAloD0MIyy+DMWLScUCUhpRSlGgVS75oFkdAsc1cRUWEb3V9lChoBmgJaA9DCF4vTRGgL3FAlIaUUpRoFUvGaBZHQLHNYqI7/4t1fZQoaAZoCWgPQwiUSnhC70dyQJSGlFKUaBVL22gWR0CxzYKeK8+SdX2UKGgGaAloD0MIe9tMhbjickCUhpRSlGgVS/JoFkdAsc2FdKNADHV9lChoBmgJaA9DCCSYamYtKnJAlIaUUpRoFUvRaBZHQLHNi29+PR11fZQoaAZoCWgPQwg8+IkDaP9vQJSGlFKUaBVL2GgWR0CxzZv4yoGZdX2UKGgGaAloD0MIjSRBuMJWc0CUhpRSlGgVS8hoFkdAsc2n04BFNXV9lChoBmgJaA9DCBtLWBtjDnFAlIaUUpRoFUvWaBZHQLHNrXarWAh1fZQoaAZoCWgPQwhf8GlO3ilzQJSGlFKUaBVL42gWR0CxzbHZ9NN8dX2UKGgGaAloD0MI73VSXxZDcUCUhpRSlGgVS8ZoFkdAsc2/t7a7E3V9lChoBmgJaA9DCIo8Sbom7HBAlIaUUpRoFUvJaBZHQLHN3fw7T2F1fZQoaAZoCWgPQwiFJoklJWxyQJSGlFKUaBVLwmgWR0Cxzd9PgvUSdX2UKGgGaAloD0MItFn1uVqfbkCUhpRSlGgVS8doFkdAsc34ePq9oXV9lChoBmgJaA9DCA9HV+kukXNAlIaUUpRoFUvUaBZHQLHOIanaWX11fZQoaAZoCWgPQwjNkgA1tSdRQJSGlFKUaBVLjmgWR0CxzkdI065odX2UKGgGaAloD0MIK9zykZTcckCUhpRSlGgVS9loFkdAsc5c85jpcHV9lChoBmgJaA9DCGb4TzdQuHNAlIaUUpRoFUv5aBZHQLHOfV0tAcF1fZQoaAZoCWgPQwhMHHkg8lpzQJSGlFKUaBVL3mgWR0CxzoyZOSGKdX2UKGgGaAloD0MIt0WZDfLkcUCUhpRSlGgVS8doFkdAsc6VHMEA53V9lChoBmgJaA9DCJxpwvaTV3BAlIaUUpRoFUvXaBZHQLHOqa/RE4N1fZQoaAZoCWgPQwh6yJQPwVJyQJSGlFKUaBVLzmgWR0CxzreZb6gvdX2UKGgGaAloD0MIMbQ6OQNLckCUhpRSlGgVS9doFkdAsc7SLFXJYHV9lChoBmgJaA9DCPjDz3+PSnFAlIaUUpRoFU0LAWgWR0CxztQ/gR9PdX2UKGgGaAloD0MIjE0rhYBcdECUhpRSlGgVS/NoFkdAsc8CwC8vmHV9lChoBmgJaA9DCCkg7X9A6XJAlIaUUpRoFUvpaBZHQLHPBDiwSrZ1fZQoaAZoCWgPQwi4PNaMDJZzQJSGlFKUaBVL12gWR0CxzwyCnP3SdX2UKGgGaAloD0MIR7Bx/Tvhc0CUhpRSlGgVS9xoFkdAsc8U4hllLHV9lChoBmgJaA9DCFQZxt2g2nFAlIaUUpRoFUvcaBZHQLHPL9eyAx11fZQoaAZoCWgPQwgf963WCeRxQJSGlFKUaBVLu2gWR0Cxz0+UliSadX2UKGgGaAloD0MIT7D/OrfuckCUhpRSlGgVS9hoFkdAsc9SoYNy53V9lChoBmgJaA9DCExV2uIa+W9AlIaUUpRoFUvPaBZHQLHPgy7PIGR1fZQoaAZoCWgPQwiN0qV/SRhSQJSGlFKUaBVLsmgWR0Cxz6QSi/O/dX2UKGgGaAloD0MIb7ckB2wbcECUhpRSlGgVS9JoFkdAsc+mevpyInV9lChoBmgJaA9DCKEsfH2tsG9AlIaUUpRoFUvQaBZHQLHPsvMbFS91fZQoaAZoCWgPQwgjh4ibk45zQJSGlFKUaBVL3GgWR0Cxz80gbIcSdX2UKGgGaAloD0MIixh2GFO7ckCUhpRSlGgVS9xoFkdAsdAMAMlTnHV9lChoBmgJaA9DCBU6r7ELNHFAlIaUUpRoFUvjaBZHQLHQGRbr1NB1fZQoaAZoCWgPQwgUzm4tU2xzQJSGlFKUaBVL/GgWR0Cx0CFpGnXNdX2UKGgGaAloD0MIjrJ+MzGMb0CUhpRSlGgVS8loFkdAsdAmGCZnc3V9lChoBmgJaA9DCAzohTsXZ3JAlIaUUpRoFUvHaBZHQLHQNi704BF1fZQoaAZoCWgPQwh8X1yq0nZvQJSGlFKUaBVL1WgWR0Cx0EHEVFhHdX2UKGgGaAloD0MIxhft8QIOckCUhpRSlGgVS9toFkdAsdBB5a/yoXV9lChoBmgJaA9DCPyqXKj8QnNAlIaUUpRoFU3aAWgWR0Cx0EvFJg9edX2UKGgGaAloD0MIf1AXKRQJcECUhpRSlGgVS9JoFkdAsdBe45Lh73V9lChoBmgJaA9DCIoD6Pc9YnFAlIaUUpRoFUu/aBZHQLHQZbaAWi11fZQoaAZoCWgPQwg5KjdRyxFvQJSGlFKUaBVLxWgWR0Cx0JiDqW1MdX2UKGgGaAloD0MIUG9GzZdec0CUhpRSlGgVS+xoFkdAsdCdpAUtZnV9lChoBmgJaA9DCDfHuU14/XFAlIaUUpRoFUvAaBZHQLHQsIq9XcR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 988,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a2efa22b3dc71248175d7de501961d364ac259ef83992bfde75f69c7d3077c
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5b7f30729be6c13ad358f0fdf4ea017328c6957989c921b7fbd55cbce9c3c4b
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e881512d6e04e0f1b278200d1aec3d471281b68e341fcc6075103da6f69cea9
3
+ size 191628
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.04345706313825, "std_reward": 17.171627073206025, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T07:16:20.675409"}