trying to upload my first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 282.04 +/- 17.17
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>", "_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651906465.549593, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPVS7zs++270jdoPJ7kaDyHFEY9pt5FvQAAgD8AAIA/bd8dvmR3wD7GLrM+VkvHvtoxEj1u8xQ+AAAAAAAAAADNRfO85LiRPeprFT6SYci+Sy9rPeDoKTwAAAAAAAAAAGbuXT37Po4/gBfmPRO5EL9ZVCg+y72QPQAAAAAAAAAAmmwTvac4qz+Vlmi+rUvQvpUKor2YuVa+AAAAAAAAAACzJFe+REK1PgI+BT9ddN2+CDCRvUxtoj4AAAAAAAAAABr90D1r8To/EaGtvCeX+r4Qjg4+/YdwvQAAAAAAAAAAMxLtvEX/kj5aLM+89NjTvuJEwr3c8hU9AAAAAAAAAABTJgs+hz8jPxwaKr46eOC+2BzMPaK8KL4AAAAAAAAAAM04lLt2xxy82rANPPpSpjz5x4i9lwGJPQAAgD8AAIA/c/5Eviyqlz8K9Ae/JXwKv9u6tL6AkWG+AAAAAAAAAADmBAM9rnW2upDHDrWLKBuwiFm1ufP8YTQAAIA/AACAPxqH1z2/h8E+T6Szvt63xr480qm9ONLevQAAAAAAAAAAmuBDvb8agD7wUgI+3Qiqvqg/cLx2yow9AAAAAAAAAADNFKI95zsjPiIXZL7eG9m+fvAXvh8dBb0AAAAAAAAAALOTJj3dzAo/E7KhvqLm/L5QCKi9uwnwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIH9pUd/YcECUhpRSlIwBbJRL0owBdJRHQLHDxZA6dUd1fZQoaAZoCWgPQwgjaTf6mC5zQJSGlFKUaBVLwmgWR0Cxw9QmReTndX2UKGgGaAloD0MI0Amhg65Mc0CUhpRSlGgVS+FoFkdAscPbhuO0cHV9lChoBmgJaA9DCGn9LQE49nFAlIaUUpRoFUvlaBZHQLHD4yU9pyp1fZQoaAZoCWgPQwgrvTYbK/xwQJSGlFKUaBVLyGgWR0Cxw+drftQbdX2UKGgGaAloD0MIJXSXxNklcUCUhpRSlGgVS+FoFkdAscQEP1+RYHV9lChoBmgJaA9DCFVpi2s88HJAlIaUUpRoFUvxaBZHQLHEVBguyu91fZQoaAZoCWgPQwipaoKouxZwQJSGlFKUaBVLyGgWR0CxxGzB68g7dX2UKGgGaAloD0MILQq7KPpVc0CUhpRSlGgVS95oFkdAscSlKf4AS3V9lChoBmgJaA9DCHXo9LzbJXBAlIaUUpRoFUvdaBZHQLHEw58BuGd1fZQoaAZoCWgPQwiAuoEC78lSQJSGlFKUaBVLsmgWR0CxxNSbUgB+dX2UKGgGaAloD0MI6/6xEB1xbkCUhpRSlGgVS+ZoFkdAscTgKOT7mHV9lChoBmgJaA9DCMufbwtWHHNAlIaUUpRoFU2qAWgWR0CxxPkORT0hdX2UKGgGaAloD0MIEK/rF+y6c0CUhpRSlGgVS+9oFkdAscUPm9xp+XV9lChoBmgJaA9DCLxXrUw4fXBAlIaUUpRoFUu/aBZHQLHFEm+0w8J1fZQoaAZoCWgPQwg49YHkXVBwQJSGlFKUaBVLwWgWR0CxxRwBxPwedX2UKGgGaAloD0MIyR02kVlOcUCUhpRSlGgVS8toFkdAscU11FH8THV9lChoBmgJaA9DCFn5ZTCGyXFAlIaUUpRoFUvhaBZHQLHFOCwr1/V1fZQoaAZoCWgPQwilZ3qJsVRyQJSGlFKUaBVL1mgWR0CxxWTjFQ2udX2UKGgGaAloD0MIjE0rhQC1ckCUhpRSlGgVTQMBaBZHQLHFZJ2MbWF1fZQoaAZoCWgPQwj5u3fUGGl0QJSGlFKUaBVL9mgWR0CxxXJm/WUbdX2UKGgGaAloD0MIA5fHmtHncUCUhpRSlGgVS/VoFkdAscXcn3L3bnV9lChoBmgJaA9DCFtbeF7qfnFAlIaUUpRoFUvpaBZHQLHF4ZSNwR51fZQoaAZoCWgPQwgGS3UBr6JyQJSGlFKUaBVLzmgWR0CxxgT7Q9iddX2UKGgGaAloD0MIhUIEHEIdcUCUhpRSlGgVS8toFkdAscYbCCSRsHV9lChoBmgJaA9DCAYTfxT1/nJAlIaUUpRoFUvzaBZHQLHKynZ00WN1fZQoaAZoCWgPQwj2B8pt++5tQJSGlFKUaBVL5mgWR0CxyuEAxSHedX2UKGgGaAloD0MIw33k1qQScECUhpRSlGgVS8hoFkdAscr4JjUd73V9lChoBmgJaA9DCF3g8liz1G5AlIaUUpRoFUvWaBZHQLHLAffoA4p1fZQoaAZoCWgPQwiztb5IqHxxQJSGlFKUaBVLyWgWR0CxyxiYgJTmdX2UKGgGaAloD0MIwYwpWGNfb0CUhpRSlGgVS9VoFkdAscsvVVghKXV9lChoBmgJaA9DCFeTp6ymwnNAlIaUUpRoFUv0aBZHQLHLOI+GGmF1fZQoaAZoCWgPQwg2HQHcbOhyQJSGlFKUaBVLy2gWR0Cxy0770nPWdX2UKGgGaAloD0MI9DXLZSMTckCUhpRSlGgVS95oFkdAsctwyBTXKHV9lChoBmgJaA9DCI/hsZ+F6HNAlIaUUpRoFUv+aBZHQLHLtyIYWLx1fZQoaAZoCWgPQwgdkloo2cpxQJSGlFKUaBVL3mgWR0Cxy/8Kb8WLdX2UKGgGaAloD0MIQKVKlL2FcECUhpRSlGgVS8toFkdAscwKAmReTnV9lChoBmgJaA9DCFWEm4yqJ3FAlIaUUpRoFUvSaBZHQLHMMeD3/Px1fZQoaAZoCWgPQwiD91W5UMhxQJSGlFKUaBVL9mgWR0CxzDVQIldDdX2UKGgGaAloD0MI4EigwSY/ckCUhpRSlGgVS85oFkdAscw5cv/R3XV9lChoBmgJaA9DCJhp+1cWxnFAlIaUUpRoFUvCaBZHQLHMU2TxG2F1fZQoaAZoCWgPQwjaBBiW/3hxQJSGlFKUaBVNpgFoFkdAscxf90ihWnV9lChoBmgJaA9DCMXnTrA/LnNAlIaUUpRoFUvbaBZHQLHMan1WbPR1fZQoaAZoCWgPQwhX68TlOJVyQJSGlFKUaBVLxGgWR0CxzHkgwGnodX2UKGgGaAloD0MI6Zs0DQq7cECUhpRSlGgVS9toFkdAscyIKqn3tnV9lChoBmgJaA9DCOEp5Eq9129AlIaUUpRoFUvCaBZHQLHMp/dZaFF1fZQoaAZoCWgPQwgwhJz3/49vQJSGlFKUaBVL6mgWR0CxzMooAn2JdX2UKGgGaAloD0MI6Zs0DUr6cUCUhpRSlGgVS+1oFkdAsczXeHi3onV9lChoBmgJaA9DCAlszsHzx3JAlIaUUpRoFUvbaBZHQLHM7z+m3vx1fZQoaAZoCWgPQwjVXG4w1CpYQJSGlFKUaBVN6ANoFkdAsc0H/+85CHV9lChoBmgJaA9DCBiWP9/W5nFAlIaUUpRoFUvcaBZHQLHNKtLL6k91fZQoaAZoCWgPQwjFdCFWP6hxQJSGlFKUaBVLwWgWR0CxzTmHk92YdX2UKGgGaAloD0MIyy+DMWLScUCUhpRSlGgVS75oFkdAsc1cRUWEb3V9lChoBmgJaA9DCF4vTRGgL3FAlIaUUpRoFUvGaBZHQLHNYqI7/4t1fZQoaAZoCWgPQwiUSnhC70dyQJSGlFKUaBVL22gWR0CxzYKeK8+SdX2UKGgGaAloD0MIe9tMhbjickCUhpRSlGgVS/JoFkdAsc2FdKNADHV9lChoBmgJaA9DCCSYamYtKnJAlIaUUpRoFUvRaBZHQLHNi29+PR11fZQoaAZoCWgPQwg8+IkDaP9vQJSGlFKUaBVL2GgWR0CxzZv4yoGZdX2UKGgGaAloD0MIjSRBuMJWc0CUhpRSlGgVS8hoFkdAsc2n04BFNXV9lChoBmgJaA9DCBtLWBtjDnFAlIaUUpRoFUvWaBZHQLHNrXarWAh1fZQoaAZoCWgPQwhf8GlO3ilzQJSGlFKUaBVL42gWR0CxzbHZ9NN8dX2UKGgGaAloD0MI73VSXxZDcUCUhpRSlGgVS8ZoFkdAsc2/t7a7E3V9lChoBmgJaA9DCIo8Sbom7HBAlIaUUpRoFUvJaBZHQLHN3fw7T2F1fZQoaAZoCWgPQwiFJoklJWxyQJSGlFKUaBVLwmgWR0Cxzd9PgvUSdX2UKGgGaAloD0MItFn1uVqfbkCUhpRSlGgVS8doFkdAsc34ePq9oXV9lChoBmgJaA9DCA9HV+kukXNAlIaUUpRoFUvUaBZHQLHOIanaWX11fZQoaAZoCWgPQwjNkgA1tSdRQJSGlFKUaBVLjmgWR0CxzkdI065odX2UKGgGaAloD0MIK9zykZTcckCUhpRSlGgVS9loFkdAsc5c85jpcHV9lChoBmgJaA9DCGb4TzdQuHNAlIaUUpRoFUv5aBZHQLHOfV0tAcF1fZQoaAZoCWgPQwhMHHkg8lpzQJSGlFKUaBVL3mgWR0CxzoyZOSGKdX2UKGgGaAloD0MIt0WZDfLkcUCUhpRSlGgVS8doFkdAsc6VHMEA53V9lChoBmgJaA9DCJxpwvaTV3BAlIaUUpRoFUvXaBZHQLHOqa/RE4N1fZQoaAZoCWgPQwh6yJQPwVJyQJSGlFKUaBVLzmgWR0CxzreZb6gvdX2UKGgGaAloD0MIMbQ6OQNLckCUhpRSlGgVS9doFkdAsc7SLFXJYHV9lChoBmgJaA9DCPjDz3+PSnFAlIaUUpRoFU0LAWgWR0CxztQ/gR9PdX2UKGgGaAloD0MIjE0rhYBcdECUhpRSlGgVS/NoFkdAsc8CwC8vmHV9lChoBmgJaA9DCCkg7X9A6XJAlIaUUpRoFUvpaBZHQLHPBDiwSrZ1fZQoaAZoCWgPQwi4PNaMDJZzQJSGlFKUaBVL12gWR0CxzwyCnP3SdX2UKGgGaAloD0MIR7Bx/Tvhc0CUhpRSlGgVS9xoFkdAsc8U4hllLHV9lChoBmgJaA9DCFQZxt2g2nFAlIaUUpRoFUvcaBZHQLHPL9eyAx11fZQoaAZoCWgPQwgf963WCeRxQJSGlFKUaBVLu2gWR0Cxz0+UliSadX2UKGgGaAloD0MIT7D/OrfuckCUhpRSlGgVS9hoFkdAsc9SoYNy53V9lChoBmgJaA9DCExV2uIa+W9AlIaUUpRoFUvPaBZHQLHPgy7PIGR1fZQoaAZoCWgPQwiN0qV/SRhSQJSGlFKUaBVLsmgWR0Cxz6QSi/O/dX2UKGgGaAloD0MIb7ckB2wbcECUhpRSlGgVS9JoFkdAsc+mevpyInV9lChoBmgJaA9DCKEsfH2tsG9AlIaUUpRoFUvQaBZHQLHPsvMbFS91fZQoaAZoCWgPQwgjh4ibk45zQJSGlFKUaBVL3GgWR0Cxz80gbIcSdX2UKGgGaAloD0MIixh2GFO7ckCUhpRSlGgVS9xoFkdAsdAMAMlTnHV9lChoBmgJaA9DCBU6r7ELNHFAlIaUUpRoFUvjaBZHQLHQGRbr1NB1fZQoaAZoCWgPQwgUzm4tU2xzQJSGlFKUaBVL/GgWR0Cx0CFpGnXNdX2UKGgGaAloD0MIjrJ+MzGMb0CUhpRSlGgVS8loFkdAsdAmGCZnc3V9lChoBmgJaA9DCAzohTsXZ3JAlIaUUpRoFUvHaBZHQLHQNi704BF1fZQoaAZoCWgPQwh8X1yq0nZvQJSGlFKUaBVL1WgWR0Cx0EHEVFhHdX2UKGgGaAloD0MIxhft8QIOckCUhpRSlGgVS9toFkdAsdBB5a/yoXV9lChoBmgJaA9DCPyqXKj8QnNAlIaUUpRoFU3aAWgWR0Cx0EvFJg9edX2UKGgGaAloD0MIf1AXKRQJcECUhpRSlGgVS9JoFkdAsdBe45Lh73V9lChoBmgJaA9DCIoD6Pc9YnFAlIaUUpRoFUu/aBZHQLHQZbaAWi11fZQoaAZoCWgPQwg5KjdRyxFvQJSGlFKUaBVLxWgWR0Cx0JiDqW1MdX2UKGgGaAloD0MIUG9GzZdec0CUhpRSlGgVS+xoFkdAsdCdpAUtZnV9lChoBmgJaA9DCDfHuU14/XFAlIaUUpRoFUvAaBZHQLHQsIq9XcR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 988, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc346e49d16a637751b33a5b6d03269ca5e4d9551ec487e59e34d76ecd5bafa
|
3 |
+
size 143989
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651906465.549593,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPVS7zs++270jdoPJ7kaDyHFEY9pt5FvQAAgD8AAIA/bd8dvmR3wD7GLrM+VkvHvtoxEj1u8xQ+AAAAAAAAAADNRfO85LiRPeprFT6SYci+Sy9rPeDoKTwAAAAAAAAAAGbuXT37Po4/gBfmPRO5EL9ZVCg+y72QPQAAAAAAAAAAmmwTvac4qz+Vlmi+rUvQvpUKor2YuVa+AAAAAAAAAACzJFe+REK1PgI+BT9ddN2+CDCRvUxtoj4AAAAAAAAAABr90D1r8To/EaGtvCeX+r4Qjg4+/YdwvQAAAAAAAAAAMxLtvEX/kj5aLM+89NjTvuJEwr3c8hU9AAAAAAAAAABTJgs+hz8jPxwaKr46eOC+2BzMPaK8KL4AAAAAAAAAAM04lLt2xxy82rANPPpSpjz5x4i9lwGJPQAAgD8AAIA/c/5Eviyqlz8K9Ae/JXwKv9u6tL6AkWG+AAAAAAAAAADmBAM9rnW2upDHDrWLKBuwiFm1ufP8YTQAAIA/AACAPxqH1z2/h8E+T6Szvt63xr480qm9ONLevQAAAAAAAAAAmuBDvb8agD7wUgI+3Qiqvqg/cLx2yow9AAAAAAAAAADNFKI95zsjPiIXZL7eG9m+fvAXvh8dBb0AAAAAAAAAALOTJj3dzAo/E7KhvqLm/L5QCKi9uwnwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIH9pUd/YcECUhpRSlIwBbJRL0owBdJRHQLHDxZA6dUd1fZQoaAZoCWgPQwgjaTf6mC5zQJSGlFKUaBVLwmgWR0Cxw9QmReTndX2UKGgGaAloD0MI0Amhg65Mc0CUhpRSlGgVS+FoFkdAscPbhuO0cHV9lChoBmgJaA9DCGn9LQE49nFAlIaUUpRoFUvlaBZHQLHD4yU9pyp1fZQoaAZoCWgPQwgrvTYbK/xwQJSGlFKUaBVLyGgWR0Cxw+drftQbdX2UKGgGaAloD0MIJXSXxNklcUCUhpRSlGgVS+FoFkdAscQEP1+RYHV9lChoBmgJaA9DCFVpi2s88HJAlIaUUpRoFUvxaBZHQLHEVBguyu91fZQoaAZoCWgPQwipaoKouxZwQJSGlFKUaBVLyGgWR0CxxGzB68g7dX2UKGgGaAloD0MILQq7KPpVc0CUhpRSlGgVS95oFkdAscSlKf4AS3V9lChoBmgJaA9DCHXo9LzbJXBAlIaUUpRoFUvdaBZHQLHEw58BuGd1fZQoaAZoCWgPQwiAuoEC78lSQJSGlFKUaBVLsmgWR0CxxNSbUgB+dX2UKGgGaAloD0MI6/6xEB1xbkCUhpRSlGgVS+ZoFkdAscTgKOT7mHV9lChoBmgJaA9DCMufbwtWHHNAlIaUUpRoFU2qAWgWR0CxxPkORT0hdX2UKGgGaAloD0MIEK/rF+y6c0CUhpRSlGgVS+9oFkdAscUPm9xp+XV9lChoBmgJaA9DCLxXrUw4fXBAlIaUUpRoFUu/aBZHQLHFEm+0w8J1fZQoaAZoCWgPQwg49YHkXVBwQJSGlFKUaBVLwWgWR0CxxRwBxPwedX2UKGgGaAloD0MIyR02kVlOcUCUhpRSlGgVS8toFkdAscU11FH8THV9lChoBmgJaA9DCFn5ZTCGyXFAlIaUUpRoFUvhaBZHQLHFOCwr1/V1fZQoaAZoCWgPQwilZ3qJsVRyQJSGlFKUaBVL1mgWR0CxxWTjFQ2udX2UKGgGaAloD0MIjE0rhQC1ckCUhpRSlGgVTQMBaBZHQLHFZJ2MbWF1fZQoaAZoCWgPQwj5u3fUGGl0QJSGlFKUaBVL9mgWR0CxxXJm/WUbdX2UKGgGaAloD0MIA5fHmtHncUCUhpRSlGgVS/VoFkdAscXcn3L3bnV9lChoBmgJaA9DCFtbeF7qfnFAlIaUUpRoFUvpaBZHQLHF4ZSNwR51fZQoaAZoCWgPQwgGS3UBr6JyQJSGlFKUaBVLzmgWR0CxxgT7Q9iddX2UKGgGaAloD0MIhUIEHEIdcUCUhpRSlGgVS8toFkdAscYbCCSRsHV9lChoBmgJaA9DCAYTfxT1/nJAlIaUUpRoFUvzaBZHQLHKynZ00WN1fZQoaAZoCWgPQwj2B8pt++5tQJSGlFKUaBVL5mgWR0CxyuEAxSHedX2UKGgGaAloD0MIw33k1qQScECUhpRSlGgVS8hoFkdAscr4JjUd73V9lChoBmgJaA9DCF3g8liz1G5AlIaUUpRoFUvWaBZHQLHLAffoA4p1fZQoaAZoCWgPQwiztb5IqHxxQJSGlFKUaBVLyWgWR0CxyxiYgJTmdX2UKGgGaAloD0MIwYwpWGNfb0CUhpRSlGgVS9VoFkdAscsvVVghKXV9lChoBmgJaA9DCFeTp6ymwnNAlIaUUpRoFUv0aBZHQLHLOI+GGmF1fZQoaAZoCWgPQwg2HQHcbOhyQJSGlFKUaBVLy2gWR0Cxy0770nPWdX2UKGgGaAloD0MI9DXLZSMTckCUhpRSlGgVS95oFkdAsctwyBTXKHV9lChoBmgJaA9DCI/hsZ+F6HNAlIaUUpRoFUv+aBZHQLHLtyIYWLx1fZQoaAZoCWgPQwgdkloo2cpxQJSGlFKUaBVL3mgWR0Cxy/8Kb8WLdX2UKGgGaAloD0MIQKVKlL2FcECUhpRSlGgVS8toFkdAscwKAmReTnV9lChoBmgJaA9DCFWEm4yqJ3FAlIaUUpRoFUvSaBZHQLHMMeD3/Px1fZQoaAZoCWgPQwiD91W5UMhxQJSGlFKUaBVL9mgWR0CxzDVQIldDdX2UKGgGaAloD0MI4EigwSY/ckCUhpRSlGgVS85oFkdAscw5cv/R3XV9lChoBmgJaA9DCJhp+1cWxnFAlIaUUpRoFUvCaBZHQLHMU2TxG2F1fZQoaAZoCWgPQwjaBBiW/3hxQJSGlFKUaBVNpgFoFkdAscxf90ihWnV9lChoBmgJaA9DCMXnTrA/LnNAlIaUUpRoFUvbaBZHQLHMan1WbPR1fZQoaAZoCWgPQwhX68TlOJVyQJSGlFKUaBVLxGgWR0CxzHkgwGnodX2UKGgGaAloD0MI6Zs0DQq7cECUhpRSlGgVS9toFkdAscyIKqn3tnV9lChoBmgJaA9DCOEp5Eq9129AlIaUUpRoFUvCaBZHQLHMp/dZaFF1fZQoaAZoCWgPQwgwhJz3/49vQJSGlFKUaBVL6mgWR0CxzMooAn2JdX2UKGgGaAloD0MI6Zs0DUr6cUCUhpRSlGgVS+1oFkdAsczXeHi3onV9lChoBmgJaA9DCAlszsHzx3JAlIaUUpRoFUvbaBZHQLHM7z+m3vx1fZQoaAZoCWgPQwjVXG4w1CpYQJSGlFKUaBVN6ANoFkdAsc0H/+85CHV9lChoBmgJaA9DCBiWP9/W5nFAlIaUUpRoFUvcaBZHQLHNKtLL6k91fZQoaAZoCWgPQwjFdCFWP6hxQJSGlFKUaBVLwWgWR0CxzTmHk92YdX2UKGgGaAloD0MIyy+DMWLScUCUhpRSlGgVS75oFkdAsc1cRUWEb3V9lChoBmgJaA9DCF4vTRGgL3FAlIaUUpRoFUvGaBZHQLHNYqI7/4t1fZQoaAZoCWgPQwiUSnhC70dyQJSGlFKUaBVL22gWR0CxzYKeK8+SdX2UKGgGaAloD0MIe9tMhbjickCUhpRSlGgVS/JoFkdAsc2FdKNADHV9lChoBmgJaA9DCCSYamYtKnJAlIaUUpRoFUvRaBZHQLHNi29+PR11fZQoaAZoCWgPQwg8+IkDaP9vQJSGlFKUaBVL2GgWR0CxzZv4yoGZdX2UKGgGaAloD0MIjSRBuMJWc0CUhpRSlGgVS8hoFkdAsc2n04BFNXV9lChoBmgJaA9DCBtLWBtjDnFAlIaUUpRoFUvWaBZHQLHNrXarWAh1fZQoaAZoCWgPQwhf8GlO3ilzQJSGlFKUaBVL42gWR0CxzbHZ9NN8dX2UKGgGaAloD0MI73VSXxZDcUCUhpRSlGgVS8ZoFkdAsc2/t7a7E3V9lChoBmgJaA9DCIo8Sbom7HBAlIaUUpRoFUvJaBZHQLHN3fw7T2F1fZQoaAZoCWgPQwiFJoklJWxyQJSGlFKUaBVLwmgWR0Cxzd9PgvUSdX2UKGgGaAloD0MItFn1uVqfbkCUhpRSlGgVS8doFkdAsc34ePq9oXV9lChoBmgJaA9DCA9HV+kukXNAlIaUUpRoFUvUaBZHQLHOIanaWX11fZQoaAZoCWgPQwjNkgA1tSdRQJSGlFKUaBVLjmgWR0CxzkdI065odX2UKGgGaAloD0MIK9zykZTcckCUhpRSlGgVS9loFkdAsc5c85jpcHV9lChoBmgJaA9DCGb4TzdQuHNAlIaUUpRoFUv5aBZHQLHOfV0tAcF1fZQoaAZoCWgPQwhMHHkg8lpzQJSGlFKUaBVL3mgWR0CxzoyZOSGKdX2UKGgGaAloD0MIt0WZDfLkcUCUhpRSlGgVS8doFkdAsc6VHMEA53V9lChoBmgJaA9DCJxpwvaTV3BAlIaUUpRoFUvXaBZHQLHOqa/RE4N1fZQoaAZoCWgPQwh6yJQPwVJyQJSGlFKUaBVLzmgWR0CxzreZb6gvdX2UKGgGaAloD0MIMbQ6OQNLckCUhpRSlGgVS9doFkdAsc7SLFXJYHV9lChoBmgJaA9DCPjDz3+PSnFAlIaUUpRoFU0LAWgWR0CxztQ/gR9PdX2UKGgGaAloD0MIjE0rhYBcdECUhpRSlGgVS/NoFkdAsc8CwC8vmHV9lChoBmgJaA9DCCkg7X9A6XJAlIaUUpRoFUvpaBZHQLHPBDiwSrZ1fZQoaAZoCWgPQwi4PNaMDJZzQJSGlFKUaBVL12gWR0CxzwyCnP3SdX2UKGgGaAloD0MIR7Bx/Tvhc0CUhpRSlGgVS9xoFkdAsc8U4hllLHV9lChoBmgJaA9DCFQZxt2g2nFAlIaUUpRoFUvcaBZHQLHPL9eyAx11fZQoaAZoCWgPQwgf963WCeRxQJSGlFKUaBVLu2gWR0Cxz0+UliSadX2UKGgGaAloD0MIT7D/OrfuckCUhpRSlGgVS9hoFkdAsc9SoYNy53V9lChoBmgJaA9DCExV2uIa+W9AlIaUUpRoFUvPaBZHQLHPgy7PIGR1fZQoaAZoCWgPQwiN0qV/SRhSQJSGlFKUaBVLsmgWR0Cxz6QSi/O/dX2UKGgGaAloD0MIb7ckB2wbcECUhpRSlGgVS9JoFkdAsc+mevpyInV9lChoBmgJaA9DCKEsfH2tsG9AlIaUUpRoFUvQaBZHQLHPsvMbFS91fZQoaAZoCWgPQwgjh4ibk45zQJSGlFKUaBVL3GgWR0Cxz80gbIcSdX2UKGgGaAloD0MIixh2GFO7ckCUhpRSlGgVS9xoFkdAsdAMAMlTnHV9lChoBmgJaA9DCBU6r7ELNHFAlIaUUpRoFUvjaBZHQLHQGRbr1NB1fZQoaAZoCWgPQwgUzm4tU2xzQJSGlFKUaBVL/GgWR0Cx0CFpGnXNdX2UKGgGaAloD0MIjrJ+MzGMb0CUhpRSlGgVS8loFkdAsdAmGCZnc3V9lChoBmgJaA9DCAzohTsXZ3JAlIaUUpRoFUvHaBZHQLHQNi704BF1fZQoaAZoCWgPQwh8X1yq0nZvQJSGlFKUaBVL1WgWR0Cx0EHEVFhHdX2UKGgGaAloD0MIxhft8QIOckCUhpRSlGgVS9toFkdAsdBB5a/yoXV9lChoBmgJaA9DCPyqXKj8QnNAlIaUUpRoFU3aAWgWR0Cx0EvFJg9edX2UKGgGaAloD0MIf1AXKRQJcECUhpRSlGgVS9JoFkdAsdBe45Lh73V9lChoBmgJaA9DCIoD6Pc9YnFAlIaUUpRoFUu/aBZHQLHQZbaAWi11fZQoaAZoCWgPQwg5KjdRyxFvQJSGlFKUaBVLxWgWR0Cx0JiDqW1MdX2UKGgGaAloD0MIUG9GzZdec0CUhpRSlGgVS+xoFkdAsdCdpAUtZnV9lChoBmgJaA9DCDfHuU14/XFAlIaUUpRoFUvAaBZHQLHQsIq9XcR1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 988,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a2efa22b3dc71248175d7de501961d364ac259ef83992bfde75f69c7d3077c
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5b7f30729be6c13ad358f0fdf4ea017328c6957989c921b7fbd55cbce9c3c4b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e881512d6e04e0f1b278200d1aec3d471281b68e341fcc6075103da6f69cea9
|
3 |
+
size 191628
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 282.04345706313825, "std_reward": 17.171627073206025, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T07:16:20.675409"}
|