File size: 1,445 Bytes
433bd94 e7ea857 fef51d0 433bd94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
license: cc-by-nc-4.0
pipeline_tag: image-segmentation
tags:
- remote sensing
- sentinel2
- landsat
- floods
---
# ml4floods pre-trained models
This repository contains the trained models of the publication:
> E. Portalés-Julià, G. Mateo-García, C. Purcell, and L. Gómez-Chova [Global flood extent segmentation in optical satellite images](https://www.nature.com/articles/s41598-023-47595-7). _Scientific Reports 13, 20316_ (2023). DOI: 10.1038/s41598-023-47595-7.
We include the trained models:
* Unet multioutput - `models/WF2_unetv2_all`
* Unet multioutput S2-to-L8 - `models/WF2_unetv2_bgriswirs`
* Unet multioutput RGBNIR - `models/WF2_unetv2_rgbi`
![metrics_ml4floods](metrics_ml4floods.png)
In order to run any of these models in Landsat or Sentinel-2 scene see the tutorial [*Inference with clouds aware floods segmentation model*](https://spaceml-org.github.io/ml4floods/content/ml4ops/HOWTO_Run_Inference_multioutput_binary.html) in the ml4floods docs.
If you find this work useful please cite:
```
@article{portales-julia_global_2023,
title = {Global flood extent segmentation in optical satellite images},
volume = {13},
issn = {2045-2322},
doi = {10.1038/s41598-023-47595-7},
number = {1},
urldate = {2023-11-30},
journal = {Scientific Reports},
author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
month = nov,
year = {2023},
pages = {20316},
}
``` |