File size: 1,556 Bytes
56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 c34530c 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 56ce5a8 bd26fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
datasets:
- yahma/alpaca-cleaned
---
# 🍷 Llama-3.2-3B-Instruct-Alpaca
This is a finetune of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).
It was trained on the [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset using Unsloth.
This was my first fine tune and it's not done the best, but it is usable for small applications.
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "itsnebulalol/Llama-3.2-3B-Instruct-Alpaca"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
---
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |