File size: 1,556 Bytes
56ce5a8
bd26fc8
 
 
 
56ce5a8
bd26fc8
 
56ce5a8
bd26fc8
56ce5a8
 
bd26fc8
 
56ce5a8
 
bd26fc8
56ce5a8
bd26fc8
56ce5a8
bd26fc8
56ce5a8
c34530c
56ce5a8
bd26fc8
56ce5a8
bd26fc8
 
56ce5a8
bd26fc8
 
 
56ce5a8
bd26fc8
 
56ce5a8
bd26fc8
 
 
 
 
 
 
 
56ce5a8
bd26fc8
 
 
56ce5a8
bd26fc8
56ce5a8
bd26fc8
56ce5a8
bd26fc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
datasets:
- yahma/alpaca-cleaned
---

# 🍷 Llama-3.2-3B-Instruct-Alpaca

This is a finetune of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).

It was trained on the [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset using Unsloth.

This was my first fine tune and it's not done the best, but it is usable for small applications.

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "itsnebulalol/Llama-3.2-3B-Instruct-Alpaca"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

---

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)