File size: 2,245 Bytes
c5810a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- ro
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- iulik-pisik/horoscop_neti
- iulik-pisik/audio_vreme
metrics:
- wer
model-index:
- name: Whisper Tiny - finetuned on weather and horoscope
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Vreme ProTV and Horoscop Neti
      type: iulik-pisik/audio_vreme
      config: default
      split: test
      args: 'config: ro, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 17.14
pipeline_tag: automatic-speech-recognition
---





# Whisper Tiny - finetuned on weather and horoscope
This model is a fine-tuned version of [openai/whisper-tiny](openai/whisper-tiny) on the Vreme ProTV and Horoscop Neti datasets.
It achieves the following results on the evaluation set:

- Loss: 0.0053
- Wer: 17.14


## Model description

This is a fine-tuned version of the Whisper Tiny model, specifically adapted for Romanian language Automatic Speech Recognition (ASR) 
in the domains of weather forecasts and horoscopes. The model has been trained on two custom datasets to improve its performance
in transcribing Romanian speech in these specific contexts.

## Training procedure

The model was fine-tuned using transfer learning techniques on the pre-trained Whisper Tiny model. 
Two custom datasets were used: audio recordings of weather forecasts and horoscopes in Romanian.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Epoch | Step | Validation Loss | WER     |
|:-----:|:----:|:---------------:|:-------:|
| 3.75  | 1000 | 0.1388          | 18.7298 |
| 7.69  | 2000 | 0.036           | 17.5637 |
| 11.63 | 3000 | 0.0089          | 17.3574 |
| 15.38 | 4000 | 0.0053          | 17.1421 |



### Framework versions

- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2