iworeushankaonce commited on
Commit
304d37c
·
1 Parent(s): bad32dd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3882
22
+ - Accuracy: 0.9
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 8
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 0.4932 | 1.0 | 112 | 0.5325 | 0.86 |
57
+ | 0.3541 | 2.0 | 225 | 0.6068 | 0.77 |
58
+ | 0.5743 | 3.0 | 337 | 0.6356 | 0.83 |
59
+ | 0.6256 | 4.0 | 450 | 0.4878 | 0.86 |
60
+ | 0.0619 | 5.0 | 562 | 0.4262 | 0.88 |
61
+ | 0.0044 | 6.0 | 675 | 0.3266 | 0.91 |
62
+ | 0.0018 | 7.0 | 787 | 0.4827 | 0.87 |
63
+ | 0.001 | 8.0 | 900 | 0.9245 | 0.82 |
64
+ | 0.1854 | 9.0 | 1012 | 0.4256 | 0.89 |
65
+ | 0.0001 | 10.0 | 1125 | 0.3898 | 0.9 |
66
+ | 0.0001 | 11.0 | 1237 | 0.3873 | 0.9 |
67
+ | 0.0001 | 12.0 | 1350 | 0.4064 | 0.91 |
68
+ | 0.0 | 13.0 | 1462 | 0.3910 | 0.9 |
69
+ | 0.0 | 14.0 | 1575 | 0.3924 | 0.9 |
70
+ | 0.0001 | 15.0 | 1687 | 0.3917 | 0.91 |
71
+ | 0.0 | 16.0 | 1800 | 0.3903 | 0.9 |
72
+ | 0.0 | 17.0 | 1912 | 0.3900 | 0.89 |
73
+ | 0.0 | 18.0 | 2025 | 0.3894 | 0.89 |
74
+ | 0.0 | 19.0 | 2137 | 0.3886 | 0.9 |
75
+ | 0.0 | 19.91 | 2240 | 0.3882 | 0.9 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.30.2
81
+ - Pytorch 2.0.1+cu118
82
+ - Datasets 2.13.1
83
+ - Tokenizers 0.13.3