File size: 2,321 Bytes
6229ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070710
 
 
 
 
 
 
 
 
6229ec5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---

language: ja

license: cc-by-sa-4.0

tags:

- finance

widget:

- text: 流動[MASK]は、1億円となりました。

---

# Additional pretrained BERT base Japanese finance 

This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.

The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0).

## Model architecture

The model architecture is the same as BERT small in the [original BERT paper](https://arxiv.org/abs/1810.04805); 12 layers, 768 dimensions of hidden states, and 12 attention heads.

## Training Data

The models are additionally trained on financial corpus from [Tohoku University's BERT base Japanese model (cl-tohoku/bert-base-japanese)](https://huggingface.co/cl-tohoku/bert-base-japanese).

The financial corpus consists of 2 corpora:

- Summaries of financial results from October 9, 2012, to December 31, 2020
- Securities reports from February 8, 2018, to December 31, 2020

The financial corpus file consists of approximately 27M sentences.


## Tokenization

You can use tokenizer [Tohoku University's BERT base Japanese model (cl-tohoku/bert-base-japanese)](https://huggingface.co/cl-tohoku/bert-base-japanese).

You can use the tokenizer:

```
tokenizer = transformers.BertJapaneseTokenizer.from_pretrained('cl-tohoku/bert-base-japanese')
```

## Training

The models are trained with the same configuration as BERT base in the [original BERT paper](https://arxiv.org/abs/1810.04805); 512 tokens per instance, 256 instances per batch, and 1M training steps.

## Citation

```
@article{Suzuki-etal-2023-ipm,
  title = {Constructing and analyzing domain-specific language model for financial text mining}
  author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi},
  journal = {Information Processing & Management},
  volume = {60},
  number = {2},
  pages = {103194},
  year = {2023},
  doi = {10.1016/j.ipm.2022.103194}
}
```

## Licenses

The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).

## Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP21K12010 and JST-Mirai Program Grant Number JPMJMI20B1.