|
from transformers import PreTrainedModel, PretrainedConfig |
|
from torchvision import models |
|
import torch.nn as nn |
|
|
|
class CustomEfficientNetConfig(PretrainedConfig): |
|
model_type = "custom_efficientnet" |
|
def __init__(self, num_classes=2, **kwargs): |
|
super().__init__(**kwargs) |
|
self.num_classes = num_classes |
|
|
|
class CustomEfficientNetForImageClassification(PreTrainedModel): |
|
config_class = CustomEfficientNetConfig |
|
base_model_prefix = "efficientnet" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_classes |
|
self.efficientnet = models.efficientnet_b0(num_classes=config.num_classes) |
|
|
|
def forward(self, pixel_values, labels=None): |
|
outputs = self.efficientnet(pixel_values) |
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(outputs, labels) |
|
return {"loss": loss, "logits": outputs} |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
config = CustomEfficientNetConfig.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
model = cls(config) |
|
state_dict = torch.load(pretrained_model_name_or_path + "/pytorch_model.bin") |
|
model.load_state_dict(state_dict) |
|
return model |