File size: 18,661 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Author: Haohe Liu
# Email: [email protected]
# Date: 11 Feb 2023

import os
import json

import torch
import torch.nn.functional as F
import numpy as np
import matplotlib
from scipy.io import wavfile
from matplotlib import pyplot as plt

matplotlib.use("Agg")

import hashlib
import os

import requests
from tqdm import tqdm

URL_MAP = {
    "vggishish_lpaps": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggishish16.pt",
    "vggishish_mean_std_melspec_10s_22050hz": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/train_means_stds_melspec_10s_22050hz.txt",
    "melception": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/melception-21-05-10T09-28-40.pt",
}

CKPT_MAP = {
    "vggishish_lpaps": "vggishish16.pt",
    "vggishish_mean_std_melspec_10s_22050hz": "train_means_stds_melspec_10s_22050hz.txt",
    "melception": "melception-21-05-10T09-28-40.pt",
}

MD5_MAP = {
    "vggishish_lpaps": "197040c524a07ccacf7715d7080a80bd",
    "vggishish_mean_std_melspec_10s_22050hz": "f449c6fd0e248936c16f6d22492bb625",
    "melception": "a71a41041e945b457c7d3d814bbcf72d",
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def read_list(fname):
    result = []
    with open(fname, "r") as f:
        for each in f.readlines():
            each = each.strip("\n")
            result.append(each)
    return result


def build_dataset_json_from_list(list_path):
    data = []
    for each in read_list(list_path):
        if "|" in each:
            wav, caption = each.split("|")
        else:
            caption = each
            wav = ""
        data.append(
            {
                "wav": wav,
                "caption": caption,
            }
        )
    return {"data": data}


def load_json(fname):
    with open(fname, "r") as f:
        data = json.load(f)
        return data


def read_json(dataset_json_file):
    with open(dataset_json_file, "r") as fp:
        data_json = json.load(fp)
    return data_json["data"]


def copy_test_subset_data(metadata, testset_copy_target_path):
    # metadata = read_json(testset_metadata)
    os.makedirs(testset_copy_target_path, exist_ok=True)
    if len(os.listdir(testset_copy_target_path)) == len(metadata):
        return
    else:
        # delete files in folder testset_copy_target_path
        for file in os.listdir(testset_copy_target_path):
            try:
                os.remove(os.path.join(testset_copy_target_path, file))
            except Exception as e:
                print(e)

    print("Copying test subset data to {}".format(testset_copy_target_path))
    for each in tqdm(metadata):
        cmd = "cp {} {}".format(each["wav"], os.path.join(testset_copy_target_path))
        os.system(cmd)


def listdir_nohidden(path):
    for f in os.listdir(path):
        if not f.startswith("."):
            yield f


def get_restore_step(path):
    checkpoints = os.listdir(path)
    if os.path.exists(os.path.join(path, "final.ckpt")):
        return "final.ckpt", 0
    elif not os.path.exists(os.path.join(path, "last.ckpt")):
        steps = [int(x.split(".ckpt")[0].split("step=")[1]) for x in checkpoints]
        return checkpoints[np.argmax(steps)], np.max(steps)
    else:
        steps = []
        for x in checkpoints:
            if "last" in x:
                if "-v" not in x:
                    fname = "last.ckpt"
                else:
                    this_version = int(x.split(".ckpt")[0].split("-v")[1])
                    steps.append(this_version)
                    if len(steps) == 0 or this_version > np.max(steps):
                        fname = "last-v%s.ckpt" % this_version
        return fname, 0


def download(url, local_path, chunk_size=1024):
    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
    with requests.get(url, stream=True) as r:
        total_size = int(r.headers.get("content-length", 0))
        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
            with open(local_path, "wb") as f:
                for data in r.iter_content(chunk_size=chunk_size):
                    if data:
                        f.write(data)
                        pbar.update(chunk_size)


def md5_hash(path):
    with open(path, "rb") as f:
        content = f.read()
    return hashlib.md5(content).hexdigest()


def get_ckpt_path(name, root, check=False):
    assert name in URL_MAP
    path = os.path.join(root, CKPT_MAP[name])
    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
        download(URL_MAP[name], path)
        md5 = md5_hash(path)
        assert md5 == MD5_MAP[name], md5
    return path


class KeyNotFoundError(Exception):
    def __init__(self, cause, keys=None, visited=None):
        self.cause = cause
        self.keys = keys
        self.visited = visited
        messages = list()
        if keys is not None:
            messages.append("Key not found: {}".format(keys))
        if visited is not None:
            messages.append("Visited: {}".format(visited))
        messages.append("Cause:\n{}".format(cause))
        message = "\n".join(messages)
        super().__init__(message)


def retrieve(
    list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False
):
    """Given a nested list or dict return the desired value at key expanding
    callable nodes if necessary and :attr:`expand` is ``True``. The expansion
    is done in-place.

    Parameters
    ----------
        list_or_dict : list or dict
            Possibly nested list or dictionary.
        key : str
            key/to/value, path like string describing all keys necessary to
            consider to get to the desired value. List indices can also be
            passed here.
        splitval : str
            String that defines the delimiter between keys of the
            different depth levels in `key`.
        default : obj
            Value returned if :attr:`key` is not found.
        expand : bool
            Whether to expand callable nodes on the path or not.

    Returns
    -------
        The desired value or if :attr:`default` is not ``None`` and the
        :attr:`key` is not found returns ``default``.

    Raises
    ------
        Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is
        ``None``.
    """

    keys = key.split(splitval)

    success = True
    try:
        visited = []
        parent = None
        last_key = None
        for key in keys:
            if callable(list_or_dict):
                if not expand:
                    raise KeyNotFoundError(
                        ValueError(
                            "Trying to get past callable node with expand=False."
                        ),
                        keys=keys,
                        visited=visited,
                    )
                list_or_dict = list_or_dict()
                parent[last_key] = list_or_dict

            last_key = key
            parent = list_or_dict

            try:
                if isinstance(list_or_dict, dict):
                    list_or_dict = list_or_dict[key]
                else:
                    list_or_dict = list_or_dict[int(key)]
            except (KeyError, IndexError, ValueError) as e:
                raise KeyNotFoundError(e, keys=keys, visited=visited)

            visited += [key]
        # final expansion of retrieved value
        if expand and callable(list_or_dict):
            list_or_dict = list_or_dict()
            parent[last_key] = list_or_dict
    except KeyNotFoundError as e:
        if default is None:
            raise e
        else:
            list_or_dict = default
            success = False

    if not pass_success:
        return list_or_dict
    else:
        return list_or_dict, success


def to_device(data, device):
    if len(data) == 12:
        (
            ids,
            raw_texts,
            speakers,
            texts,
            src_lens,
            max_src_len,
            mels,
            mel_lens,
            max_mel_len,
            pitches,
            energies,
            durations,
        ) = data

        speakers = torch.from_numpy(speakers).long().to(device)
        texts = torch.from_numpy(texts).long().to(device)
        src_lens = torch.from_numpy(src_lens).to(device)
        mels = torch.from_numpy(mels).float().to(device)
        mel_lens = torch.from_numpy(mel_lens).to(device)
        pitches = torch.from_numpy(pitches).float().to(device)
        energies = torch.from_numpy(energies).to(device)
        durations = torch.from_numpy(durations).long().to(device)

        return (
            ids,
            raw_texts,
            speakers,
            texts,
            src_lens,
            max_src_len,
            mels,
            mel_lens,
            max_mel_len,
            pitches,
            energies,
            durations,
        )

    if len(data) == 6:
        (ids, raw_texts, speakers, texts, src_lens, max_src_len) = data

        speakers = torch.from_numpy(speakers).long().to(device)
        texts = torch.from_numpy(texts).long().to(device)
        src_lens = torch.from_numpy(src_lens).to(device)

        return (ids, raw_texts, speakers, texts, src_lens, max_src_len)


def log(logger, step=None, fig=None, audio=None, sampling_rate=22050, tag=""):
    # if losses is not None:
    #     logger.add_scalar("Loss/total_loss", losses[0], step)
    #     logger.add_scalar("Loss/mel_loss", losses[1], step)
    #     logger.add_scalar("Loss/mel_postnet_loss", losses[2], step)
    #     logger.add_scalar("Loss/pitch_loss", losses[3], step)
    #     logger.add_scalar("Loss/energy_loss", losses[4], step)
    #     logger.add_scalar("Loss/duration_loss", losses[5], step)
    #     if(len(losses) > 6):
    #         logger.add_scalar("Loss/disc_loss", losses[6], step)
    #         logger.add_scalar("Loss/fmap_loss", losses[7], step)
    #         logger.add_scalar("Loss/r_loss", losses[8], step)
    #         logger.add_scalar("Loss/g_loss", losses[9], step)
    #         logger.add_scalar("Loss/gen_loss", losses[10], step)
    #         logger.add_scalar("Loss/diff_loss", losses[11], step)

    if fig is not None:
        logger.add_figure(tag, fig)

    if audio is not None:
        audio = audio / (max(abs(audio)) * 1.1)
        logger.add_audio(
            tag,
            audio,
            sample_rate=sampling_rate,
        )


def get_mask_from_lengths(lengths, max_len=None):
    batch_size = lengths.shape[0]
    if max_len is None:
        max_len = torch.max(lengths).item()

    ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
    mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)

    return mask


def expand(values, durations):
    out = list()
    for value, d in zip(values, durations):
        out += [value] * max(0, int(d))
    return np.array(out)


def synth_one_sample_val(
    targets, predictions, vocoder, model_config, preprocess_config
):
    index = np.random.choice(list(np.arange(targets[6].size(0))))

    basename = targets[0][index]
    src_len = predictions[8][index].item()
    mel_len = predictions[9][index].item()
    mel_target = targets[6][index, :mel_len].detach().transpose(0, 1)

    mel_prediction = predictions[0][index, :mel_len].detach().transpose(0, 1)
    postnet_mel_prediction = predictions[1][index, :mel_len].detach().transpose(0, 1)
    duration = targets[11][index, :src_len].detach().cpu().numpy()

    if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
        pitch = predictions[2][index, :src_len].detach().cpu().numpy()
        pitch = expand(pitch, duration)
    else:
        pitch = predictions[2][index, :mel_len].detach().cpu().numpy()

    if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
        energy = predictions[3][index, :src_len].detach().cpu().numpy()
        energy = expand(energy, duration)
    else:
        energy = predictions[3][index, :mel_len].detach().cpu().numpy()

    with open(
        os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
    ) as f:
        stats = json.load(f)
        stats = stats["pitch"] + stats["energy"][:2]

    # from datetime import datetime
    # now = datetime.now()
    # current_time = now.strftime("%D:%H:%M:%S")
    # np.save(("mel_pred_%s.npy" % current_time).replace("/","-"), mel_prediction.cpu().numpy())
    # np.save(("postnet_mel_prediction_%s.npy" % current_time).replace("/","-"), postnet_mel_prediction.cpu().numpy())
    # np.save(("mel_target_%s.npy" % current_time).replace("/","-"), mel_target.cpu().numpy())

    fig = plot_mel(
        [
            (mel_prediction.cpu().numpy(), pitch, energy),
            (postnet_mel_prediction.cpu().numpy(), pitch, energy),
            (mel_target.cpu().numpy(), pitch, energy),
        ],
        stats,
        [
            "Raw mel spectrogram prediction",
            "Postnet mel prediction",
            "Ground-Truth Spectrogram",
        ],
    )

    if vocoder is not None:
        from .model_util import vocoder_infer

        wav_reconstruction = vocoder_infer(
            mel_target.unsqueeze(0),
            vocoder,
            model_config,
            preprocess_config,
        )[0]
        wav_prediction = vocoder_infer(
            postnet_mel_prediction.unsqueeze(0),
            vocoder,
            model_config,
            preprocess_config,
        )[0]
    else:
        wav_reconstruction = wav_prediction = None

    return fig, wav_reconstruction, wav_prediction, basename


def synth_one_sample(mel_input, mel_prediction, labels, vocoder):
    if vocoder is not None:
        from .model_util import vocoder_infer

        wav_reconstruction = vocoder_infer(
            mel_input.permute(0, 2, 1),
            vocoder,
        )
        wav_prediction = vocoder_infer(
            mel_prediction.permute(0, 2, 1),
            vocoder,
        )
    else:
        wav_reconstruction = wav_prediction = None

    return wav_reconstruction, wav_prediction


def synth_samples(targets, predictions, vocoder, model_config, preprocess_config, path):
    # (diff_output, diff_loss, latent_loss) = diffusion

    basenames = targets[0]

    for i in range(len(predictions[1])):
        basename = basenames[i]
        src_len = predictions[8][i].item()
        mel_len = predictions[9][i].item()
        mel_prediction = predictions[1][i, :mel_len].detach().transpose(0, 1)
        # diff_output = diff_output[i, :mel_len].detach().transpose(0, 1)
        # duration = predictions[5][i, :src_len].detach().cpu().numpy()
        if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level":
            pitch = predictions[2][i, :src_len].detach().cpu().numpy()
            # pitch = expand(pitch, duration)
        else:
            pitch = predictions[2][i, :mel_len].detach().cpu().numpy()
        if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level":
            energy = predictions[3][i, :src_len].detach().cpu().numpy()
            # energy = expand(energy, duration)
        else:
            energy = predictions[3][i, :mel_len].detach().cpu().numpy()
        # import ipdb; ipdb.set_trace()
        with open(
            os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
        ) as f:
            stats = json.load(f)
            stats = stats["pitch"] + stats["energy"][:2]

        fig = plot_mel(
            [
                (mel_prediction.cpu().numpy(), pitch, energy),
            ],
            stats,
            ["Synthetized Spectrogram by PostNet"],
        )
        # np.save("{}_postnet.npy".format(basename), mel_prediction.cpu().numpy())
        plt.savefig(os.path.join(path, "{}_postnet_2.png".format(basename)))
        plt.close()

    from .model_util import vocoder_infer

    mel_predictions = predictions[1].transpose(1, 2)
    lengths = predictions[9] * preprocess_config["preprocessing"]["stft"]["hop_length"]
    wav_predictions = vocoder_infer(
        mel_predictions, vocoder, model_config, preprocess_config, lengths=lengths
    )

    sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
    for wav, basename in zip(wav_predictions, basenames):
        wavfile.write(os.path.join(path, "{}.wav".format(basename)), sampling_rate, wav)


def plot_mel(data, titles=None):
    fig, axes = plt.subplots(len(data), 1, squeeze=False)
    if titles is None:
        titles = [None for i in range(len(data))]

    for i in range(len(data)):
        mel = data[i]
        axes[i][0].imshow(mel, origin="lower", aspect="auto")
        axes[i][0].set_aspect(2.5, adjustable="box")
        axes[i][0].set_ylim(0, mel.shape[0])
        axes[i][0].set_title(titles[i], fontsize="medium")
        axes[i][0].tick_params(labelsize="x-small", left=False, labelleft=False)
        axes[i][0].set_anchor("W")

    return fig


def pad_1D(inputs, PAD=0):
    def pad_data(x, length, PAD):
        x_padded = np.pad(
            x, (0, length - x.shape[0]), mode="constant", constant_values=PAD
        )
        return x_padded

    max_len = max((len(x) for x in inputs))
    padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])

    return padded


def pad_2D(inputs, maxlen=None):
    def pad(x, max_len):
        PAD = 0
        if np.shape(x)[0] > max_len:
            raise ValueError("not max_len")

        s = np.shape(x)[1]
        x_padded = np.pad(
            x, (0, max_len - np.shape(x)[0]), mode="constant", constant_values=PAD
        )
        return x_padded[:, :s]

    if maxlen:
        output = np.stack([pad(x, maxlen) for x in inputs])
    else:
        max_len = max(np.shape(x)[0] for x in inputs)
        output = np.stack([pad(x, max_len) for x in inputs])

    return output


def pad(input_ele, mel_max_length=None):
    if mel_max_length:
        max_len = mel_max_length
    else:
        max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])

    out_list = list()
    for i, batch in enumerate(input_ele):
        if len(batch.shape) == 1:
            one_batch_padded = F.pad(
                batch, (0, max_len - batch.size(0)), "constant", 0.0
            )
        elif len(batch.shape) == 2:
            one_batch_padded = F.pad(
                batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
            )
        out_list.append(one_batch_padded)
    out_padded = torch.stack(out_list)
    return out_padded