jadechoghari commited on
Commit
2550b3d
·
verified ·
1 Parent(s): bab90d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -22
README.md CHANGED
@@ -14,13 +14,6 @@ Official repository for RobustSAM: Segment Anything Robustly on Degraded Images
14
 
15
  [Project Page](https://robustsam.github.io/) | [Paper](https://arxiv.org/abs/2406.09627) | [Dataset](https://huggingface.co/robustsam/robustsam/tree/main/dataset)
16
 
17
-
18
- ## Updates
19
- - July 2024: ✨ Training code, data and model checkpoints for different ViT backbones are released!
20
- - June 2024: ✨ Inference code has been released!
21
- - Feb 2024: ✨ RobustSAM was accepted into CVPR 2024!
22
-
23
-
24
  ## Introduction
25
  Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization.
26
 
@@ -122,11 +115,6 @@ plt.axis("off")
122
  plt.show()
123
  ```
124
 
125
-
126
-
127
- ## Comparison of computational requirements
128
- <img width="720" alt="image" src='figures/Computational requirements.PNG'>
129
-
130
  ## Visual Comparison
131
  <table>
132
  <tr>
@@ -149,16 +137,6 @@ plt.show()
149
 
150
  <img width="1096" alt="image" src='figures/qualitative_result.PNG'>
151
 
152
- ## Quantitative Comparison
153
- ### Seen dataset with synthetic degradation
154
- <img width="720" alt="image" src='figures/seen_dataset_with_synthetic_degradation.PNG'>
155
-
156
- ### Unseen dataset with synthetic degradation
157
- <img width="720" alt="image" src='figures/unseen_dataset_with_synthetic_degradation.PNG'>
158
-
159
- ### Unseen dataset with real degradation
160
- <img width="600" alt="image" src='figures/unseen_dataset_with_real_degradation.PNG'>
161
-
162
  ## Reference
163
  If you find this work useful, please consider citing us!
164
  ```python
 
14
 
15
  [Project Page](https://robustsam.github.io/) | [Paper](https://arxiv.org/abs/2406.09627) | [Dataset](https://huggingface.co/robustsam/robustsam/tree/main/dataset)
16
 
 
 
 
 
 
 
 
17
  ## Introduction
18
  Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization.
19
 
 
115
  plt.show()
116
  ```
117
 
 
 
 
 
 
118
  ## Visual Comparison
119
  <table>
120
  <tr>
 
137
 
138
  <img width="1096" alt="image" src='figures/qualitative_result.PNG'>
139
 
 
 
 
 
 
 
 
 
 
 
140
  ## Reference
141
  If you find this work useful, please consider citing us!
142
  ```python