jadechoghari commited on
Commit
baf33c3
·
verified ·
1 Parent(s): b308d35

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -21
README.md CHANGED
@@ -14,12 +14,6 @@ Official repository for RobustSAM: Segment Anything Robustly on Degraded Images
14
  [Project Page](https://robustsam.github.io/) | [Paper](https://arxiv.org/abs/2406.09627) | [Dataset](https://huggingface.co/robustsam/robustsam/tree/main/dataset)
15
 
16
 
17
- ## Updates
18
- - July 2024: ✨ Training code, data and model checkpoints for different ViT backbones are released!
19
- - June 2024: ✨ Inference code has been released!
20
- - Feb 2024: ✨ RobustSAM was accepted into CVPR 2024!
21
-
22
-
23
  ## Introduction
24
  Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization.
25
 
@@ -120,11 +114,6 @@ plt.axis("off")
120
  plt.show()
121
  ```
122
 
123
- <img width="1096" alt="image" src="figures/architecture.jpg">
124
-
125
- ## Comparison of computational requirements
126
- <img width="720" alt="image" src='figures/Computational requirements.PNG'>
127
-
128
  ## Visual Comparison
129
  <table>
130
  <tr>
@@ -147,16 +136,6 @@ plt.show()
147
 
148
  <img width="1096" alt="image" src='figures/qualitative_result.PNG'>
149
 
150
- ## Quantitative Comparison
151
- ### Seen dataset with synthetic degradation
152
- <img width="720" alt="image" src='figures/seen_dataset_with_synthetic_degradation.PNG'>
153
-
154
- ### Unseen dataset with synthetic degradation
155
- <img width="720" alt="image" src='figures/unseen_dataset_with_synthetic_degradation.PNG'>
156
-
157
- ### Unseen dataset with real degradation
158
- <img width="600" alt="image" src='figures/unseen_dataset_with_real_degradation.PNG'>
159
-
160
  ## Reference
161
  If you find this work useful, please consider citing us!
162
  ```python
 
14
  [Project Page](https://robustsam.github.io/) | [Paper](https://arxiv.org/abs/2406.09627) | [Dataset](https://huggingface.co/robustsam/robustsam/tree/main/dataset)
15
 
16
 
 
 
 
 
 
 
17
  ## Introduction
18
  Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization.
19
 
 
114
  plt.show()
115
  ```
116
 
 
 
 
 
 
117
  ## Visual Comparison
118
  <table>
119
  <tr>
 
136
 
137
  <img width="1096" alt="image" src='figures/qualitative_result.PNG'>
138
 
 
 
 
 
 
 
 
 
 
 
139
  ## Reference
140
  If you find this work useful, please consider citing us!
141
  ```python