jamil226 commited on
Commit
3aadb42
·
verified ·
1 Parent(s): b63a063

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -13
README.md CHANGED
@@ -25,23 +25,24 @@ It achieves the following results on the evaluation set:
25
  - Rougelsum: 0.1842
26
  - Generated Length: 19.0
27
 
28
- ## Model description
29
 
30
- The developers of the Text-To-Text Transfer Transformer (T5) write:
31
 
32
- With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
33
 
34
- T5-Small is the checkpoint with 60 million parameters.
35
 
36
- ## Intended uses & limitations
37
-
38
- More information needed
39
-
40
- ## Training and evaluation data
41
-
42
- More information needed
43
-
44
- ## Training procedure
 
45
 
46
  ### Training hyperparameters
47
 
 
25
  - Rougelsum: 0.1842
26
  - Generated Length: 19.0
27
 
28
+ ## Model Description
29
 
30
+ The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html):
31
 
32
+ > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
33
 
34
+ T5-Small is the checkpoint with 60 million parameters.
35
 
36
+ - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints)
37
+ - **Model type:** Language model
38
+ - **Language(s) (NLP):** English, French, Romanian, German
39
+ - **License:** Apache 2.0
40
+ - **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5)
41
+ - **Resources for more information:**
42
+ - [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
43
+ - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
44
+ - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer)
45
+ - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5)
46
 
47
  ### Training hyperparameters
48