Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +493 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
datasets:
|
4 |
+
- momo22/eng2nep
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- ne
|
8 |
+
library_name: sentence-transformers
|
9 |
+
metrics:
|
10 |
+
- negative_mse
|
11 |
+
- src2trg_accuracy
|
12 |
+
- trg2src_accuracy
|
13 |
+
- mean_accuracy
|
14 |
+
pipeline_tag: sentence-similarity
|
15 |
+
tags:
|
16 |
+
- sentence-transformers
|
17 |
+
- sentence-similarity
|
18 |
+
- feature-extraction
|
19 |
+
- generated_from_trainer
|
20 |
+
- dataset_size:1000
|
21 |
+
- loss:MSELoss
|
22 |
+
- dataset_size:5000
|
23 |
+
- dataset_size:8000
|
24 |
+
widget:
|
25 |
+
- source_sentence: 'The aggressive semi-employed religion workshop of Razzak, (EFP).
|
26 |
+
|
27 |
+
'
|
28 |
+
sentences:
|
29 |
+
- 'मा ग्रिटर भेट्टाउन सकेन वा GDM प्रयोगकर्ताले कार्यान्वयन गर्न सकेन
|
30 |
+
|
31 |
+
'
|
32 |
+
- 'रज्जाकको आक्रामक अर्द्धशतक धर्मशाला, (एएफपी)।
|
33 |
+
|
34 |
+
'
|
35 |
+
- 'त्यसैले मेरो विजयपछि म त्यस्तो अवस्था आउन दिनेछैन।
|
36 |
+
|
37 |
+
'
|
38 |
+
- source_sentence: 'The authority is being a constitutional body, it was also empowered
|
39 |
+
by passing the bill from Parliament.
|
40 |
+
|
41 |
+
'
|
42 |
+
sentences:
|
43 |
+
- 'अख्तियार संवैधानिक निकाय त हुँदै हो, त्यसमा पनि संसदबाटै विधेयक पास गरेर अख्तियारलाई
|
44 |
+
अधिकारसम्पन्न पनि गराइएको थियो।
|
45 |
+
|
46 |
+
'
|
47 |
+
- 'म यहूदाका राजा सिदकियाहलाई र उसका मानिसहरूलाई तिनीहरूका शत्रुहरूकहाँ सुम्पिनेछु
|
48 |
+
जसले तिनीहरूलाई मार्न चाहन्छन्। ती सेनाहरू यरूशलेमबाट गइसकेका भएता पनि म तिनीहरूलाई
|
49 |
+
बाबेलका राजाको सेनाहरूकहाँ सुम्पिनेछु।
|
50 |
+
|
51 |
+
'
|
52 |
+
- '– संकटकालको असर न्यायिक क्षेत्रमा मात्रै पर्दैन, समग्र मुलुकमै पर्छ।
|
53 |
+
|
54 |
+
'
|
55 |
+
- source_sentence: 'The two-day conference will participate in investors from China,
|
56 |
+
India, Japan, the US, European countries, Britain and other countries, the Federation
|
57 |
+
said.
|
58 |
+
|
59 |
+
'
|
60 |
+
sentences:
|
61 |
+
- 'उनीहरूको जनजीविकाको आधार प्राकृतिक स्रोत रहेको छ।
|
62 |
+
|
63 |
+
'
|
64 |
+
- 'दुई दिनसम्म हुने सम्मेलनमा चीन, भारत, जापान, अमेरिका, युरोपियन देशहरू, बेलायत
|
65 |
+
लगायत देशबाट लगानीकर्ताको सहभागिता गराउने महासंघले जानकारी दिएको छ
|
66 |
+
|
67 |
+
'
|
68 |
+
- 'नयाँ स्न्यापसट लिनका लागि यो बटन क्लिक गर्नुहोस् ।
|
69 |
+
|
70 |
+
'
|
71 |
+
- source_sentence: 'Mr Sankey issued a "confession" through his solicitor after Shields
|
72 |
+
had been convicted but then withdrew it.
|
73 |
+
|
74 |
+
'
|
75 |
+
sentences:
|
76 |
+
- 'श्री सान्कीले ढालहरू दोषी भएपछि आफ्नो समाधानकर्तामार्फत "स्वीकृति" जारी गर्नुभयो
|
77 |
+
तर त्यसपछि यसलाई फिर्ता लिनुभयो।
|
78 |
+
|
79 |
+
'
|
80 |
+
- 'कृत्रिम रुपमा पेट्रोलियम पदार्थको मूल्य स्थिर राख्न अनुदान दिदै जाने हो भने नेपाली
|
81 |
+
अर्थतन्त्र एकदिन धराशायी हुनेछ।
|
82 |
+
|
83 |
+
'
|
84 |
+
- 'ओली सरकारले "राष्ट्रियता-राष्ट्रवाद र" आर्थिक सम्ब्रिद्धि "-आर्थिक विकासलाई यसको
|
85 |
+
प्राथमिकताको रूपमा घोषणा गरेको छ।
|
86 |
+
|
87 |
+
'
|
88 |
+
- source_sentence: 'We want to use this time to appeal to the American government
|
89 |
+
to see if they can finally close this chapter.
|
90 |
+
|
91 |
+
'
|
92 |
+
sentences:
|
93 |
+
- 'धेरैले घाउ पाए र ओछ्यानमा थिए।
|
94 |
+
|
95 |
+
'
|
96 |
+
- 'नाम यसको अन्तरराष्ट्रिय हलको अद्वितिय डिजाइनबाट स्पष्ट रूपमा प्राप्त हुन्छ, जुन
|
97 |
+
शीर्षकनियम स्पेसबाट बनेको छ, जुन ठूलो गहिराइमा उच्च दबाब बुझ्न सक्षम छ।
|
98 |
+
|
99 |
+
'
|
100 |
+
- 'हामी अमेरिकी सरकारलाई अपील गर्न यसपटक प्रयोग गर्न चाहन्छौं कि उनीहरूले अन्त्यमा
|
101 |
+
यो अध्याय बन्द गर्न सक्छन्।
|
102 |
+
|
103 |
+
'
|
104 |
+
model-index:
|
105 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
106 |
+
results:
|
107 |
+
- task:
|
108 |
+
type: knowledge-distillation
|
109 |
+
name: Knowledge Distillation
|
110 |
+
dataset:
|
111 |
+
name: Unknown
|
112 |
+
type: unknown
|
113 |
+
metrics:
|
114 |
+
- type: negative_mse
|
115 |
+
value: -0.37439612206071615
|
116 |
+
name: Negative Mse
|
117 |
+
- task:
|
118 |
+
type: translation
|
119 |
+
name: Translation
|
120 |
+
dataset:
|
121 |
+
name: Unknown
|
122 |
+
type: unknown
|
123 |
+
metrics:
|
124 |
+
- type: src2trg_accuracy
|
125 |
+
value: 0.0186
|
126 |
+
name: Src2Trg Accuracy
|
127 |
+
- type: trg2src_accuracy
|
128 |
+
value: 0.00835
|
129 |
+
name: Trg2Src Accuracy
|
130 |
+
- type: mean_accuracy
|
131 |
+
value: 0.013474999999999999
|
132 |
+
name: Mean Accuracy
|
133 |
+
---
|
134 |
+
|
135 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
136 |
+
|
137 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
138 |
+
|
139 |
+
## Model Details
|
140 |
+
|
141 |
+
### Model Description
|
142 |
+
- **Model Type:** Sentence Transformer
|
143 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
144 |
+
- **Maximum Sequence Length:** 256 tokens
|
145 |
+
- **Output Dimensionality:** 384 tokens
|
146 |
+
- **Similarity Function:** Cosine Similarity
|
147 |
+
- **Training Dataset:**
|
148 |
+
- [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep)
|
149 |
+
- **Languages:** en, ne
|
150 |
+
<!-- - **License:** Unknown -->
|
151 |
+
|
152 |
+
### Model Sources
|
153 |
+
|
154 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
155 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
156 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
157 |
+
|
158 |
+
### Full Model Architecture
|
159 |
+
|
160 |
+
```
|
161 |
+
SentenceTransformer(
|
162 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
163 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
164 |
+
(2): Normalize()
|
165 |
+
)
|
166 |
+
```
|
167 |
+
|
168 |
+
## Usage
|
169 |
+
|
170 |
+
### Direct Usage (Sentence Transformers)
|
171 |
+
|
172 |
+
First install the Sentence Transformers library:
|
173 |
+
|
174 |
+
```bash
|
175 |
+
pip install -U sentence-transformers
|
176 |
+
```
|
177 |
+
|
178 |
+
Then you can load this model and run inference.
|
179 |
+
```python
|
180 |
+
from sentence_transformers import SentenceTransformer
|
181 |
+
|
182 |
+
# Download from the 🤗 Hub
|
183 |
+
model = SentenceTransformer("jangedoo/all-MiniLM-L6-v2-nepali")
|
184 |
+
# Run inference
|
185 |
+
sentences = [
|
186 |
+
'We want to use this time to appeal to the American government to see if they can finally close this chapter.\n',
|
187 |
+
'हामी अमेरिकी सरकारलाई अपील गर्न यसपटक प्रयोग गर्न चाहन्छौं कि उनीहरूले अन्त्यमा यो अध्याय बन्द गर्न सक्छन्।\n',
|
188 |
+
'नाम यसको अन्तरराष्ट्रिय हलको अद्वितिय डिजाइनबाट स्पष्ट रूपमा प्राप्त हुन्छ, जुन शीर्षकनियम स्पेसबाट बनेको छ, जुन ठूलो गहिराइमा उच्च दबाब बुझ्न सक्षम छ।\n',
|
189 |
+
]
|
190 |
+
embeddings = model.encode(sentences)
|
191 |
+
print(embeddings.shape)
|
192 |
+
# [3, 384]
|
193 |
+
|
194 |
+
# Get the similarity scores for the embeddings
|
195 |
+
similarities = model.similarity(embeddings, embeddings)
|
196 |
+
print(similarities.shape)
|
197 |
+
# [3, 3]
|
198 |
+
```
|
199 |
+
|
200 |
+
<!--
|
201 |
+
### Direct Usage (Transformers)
|
202 |
+
|
203 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
204 |
+
|
205 |
+
</details>
|
206 |
+
-->
|
207 |
+
|
208 |
+
<!--
|
209 |
+
### Downstream Usage (Sentence Transformers)
|
210 |
+
|
211 |
+
You can finetune this model on your own dataset.
|
212 |
+
|
213 |
+
<details><summary>Click to expand</summary>
|
214 |
+
|
215 |
+
</details>
|
216 |
+
-->
|
217 |
+
|
218 |
+
<!--
|
219 |
+
### Out-of-Scope Use
|
220 |
+
|
221 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
222 |
+
-->
|
223 |
+
|
224 |
+
## Evaluation
|
225 |
+
|
226 |
+
### Metrics
|
227 |
+
|
228 |
+
#### Knowledge Distillation
|
229 |
+
|
230 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
231 |
+
|
232 |
+
| Metric | Value |
|
233 |
+
|:-----------------|:------------|
|
234 |
+
| **negative_mse** | **-0.3744** |
|
235 |
+
|
236 |
+
#### Translation
|
237 |
+
|
238 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
239 |
+
|
240 |
+
| Metric | Value |
|
241 |
+
|:------------------|:-----------|
|
242 |
+
| src2trg_accuracy | 0.0186 |
|
243 |
+
| trg2src_accuracy | 0.0083 |
|
244 |
+
| **mean_accuracy** | **0.0135** |
|
245 |
+
|
246 |
+
<!--
|
247 |
+
## Bias, Risks and Limitations
|
248 |
+
|
249 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
### Recommendations
|
254 |
+
|
255 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
## Training Details
|
259 |
+
|
260 |
+
### Training Dataset
|
261 |
+
|
262 |
+
#### momo22/eng2nep
|
263 |
+
|
264 |
+
* Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
|
265 |
+
* Size: 8,000 training samples
|
266 |
+
* Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
|
267 |
+
* Approximate statistics based on the first 1000 samples:
|
268 |
+
| | English | Nepali | label |
|
269 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
270 |
+
| type | string | string | list |
|
271 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 26.29 tokens</li><li>max: 130 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 65.39 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
|
272 |
+
* Samples:
|
273 |
+
| English | Nepali | label |
|
274 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|
275 |
+
| <code>But with the origin of feudal practices in the Middle Ages, the practice of untouchability began, as well as discrimination against women.<br></code> | <code>तर मध्ययुगमा सामन्ती प्रथाको उद्भव भएसँगै जसरी छुवाछुत प्रथाको शुरुवात भयो, त्यसैगरी नारी प्रति पनि विभेद गरिन थालियो<br></code> | <code>[-0.05432726442813873, 0.029996933415532112, -0.008532932959496975, -0.035200122743844986, 0.008856767788529396, ...]</code> |
|
276 |
+
| <code>A Pandit was found on the way to Pokhara from Baglung.<br></code> | <code>वाग्लुङ्गबाट पोखरा आउँदा बाटोमा एकजना पण्डित भेटिए।<br></code> | <code>[-0.023763148114085197, 0.0959007516503334, -0.11197677254676819, 0.10978179425001144, -0.028137238696217537, ...]</code> |
|
277 |
+
| <code>He went on: "She ate a perfectly normal and healthy diet.<br></code> | <code>उनी गए: "उनले पूर्ण सामान्य र स्वस्थ आहार खाइन्।<br></code> | <code>[0.028130479156970978, 0.030386686325073242, -0.012276170775294304, 0.1316223442554474, -0.01928202621638775, ...]</code> |
|
278 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
279 |
+
|
280 |
+
### Evaluation Dataset
|
281 |
+
|
282 |
+
#### momo22/eng2nep
|
283 |
+
|
284 |
+
* Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
|
285 |
+
* Size: 500 evaluation samples
|
286 |
+
* Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
|
287 |
+
* Approximate statistics based on the first 1000 samples:
|
288 |
+
| | English | Nepali | label |
|
289 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
290 |
+
| type | string | string | list |
|
291 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 26.71 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 64.1 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
|
292 |
+
* Samples:
|
293 |
+
| English | Nepali | label |
|
294 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|
295 |
+
| <code>Chapter 3<br></code> | <code>परिच्छेद–३<br></code> | <code>[-0.049459926784038544, 0.048675183206796646, 0.016583453863859177, 0.04876156523823738, -0.020754676312208176, ...]</code> |
|
296 |
+
| <code>The capability of MOF would be strengthened to enable it to efficiently play the lead role in donor coordination, and to secure support from all stakeholders in aid coordination activities.<br></code> | <code>दाताहरूको समन्वयमा नेतृत्वदायीको भूमिका निर्वाह प्रभावकारी ढंगले गर्न अर्थ मन्त्रालयको क्षमता सुदृढ गरिनेछ यसको लागि सबै सरोकारवालाबाट समर्थन प्राप्त गरिनेछ ।<br></code> | <code>[-0.06200315058231354, -0.016507938504219055, -0.029924314469099045, -0.052509162575006485, 0.07746178656816483, ...]</code> |
|
297 |
+
| <code>Polimatrix, Inc. is a system integrator and total solutions provider delivering radiation and nuclear protection and detection.<br></code> | <code>पोलिमाट्रिक्स, इन्कर्पोरेटिड प्रणाली इन्टिजर र कुल समाधान प्रदायक रेडियो र आणविक संरक्षण र पत्ता लगाउने प्रणाली इन्टिजर र कुल समाधान प्रदायक हो।<br></code> | <code>[-0.0446796678006649, 0.026428330689668655, -0.09837698936462402, -0.07765442878007889, -0.020364686846733093, ...]</code> |
|
298 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
299 |
+
|
300 |
+
### Training Hyperparameters
|
301 |
+
#### Non-Default Hyperparameters
|
302 |
+
|
303 |
+
- `eval_strategy`: steps
|
304 |
+
- `per_device_train_batch_size`: 64
|
305 |
+
- `per_device_eval_batch_size`: 64
|
306 |
+
- `learning_rate`: 2e-05
|
307 |
+
- `num_train_epochs`: 1
|
308 |
+
- `warmup_ratio`: 0.1
|
309 |
+
- `bf16`: True
|
310 |
+
- `push_to_hub`: True
|
311 |
+
- `hub_model_id`: jangedoo/all-MiniLM-L6-v2-nepali
|
312 |
+
- `push_to_hub_model_id`: all-MiniLM-L6-v2-nepali
|
313 |
+
|
314 |
+
#### All Hyperparameters
|
315 |
+
<details><summary>Click to expand</summary>
|
316 |
+
|
317 |
+
- `overwrite_output_dir`: False
|
318 |
+
- `do_predict`: False
|
319 |
+
- `eval_strategy`: steps
|
320 |
+
- `prediction_loss_only`: True
|
321 |
+
- `per_device_train_batch_size`: 64
|
322 |
+
- `per_device_eval_batch_size`: 64
|
323 |
+
- `per_gpu_train_batch_size`: None
|
324 |
+
- `per_gpu_eval_batch_size`: None
|
325 |
+
- `gradient_accumulation_steps`: 1
|
326 |
+
- `eval_accumulation_steps`: None
|
327 |
+
- `learning_rate`: 2e-05
|
328 |
+
- `weight_decay`: 0.0
|
329 |
+
- `adam_beta1`: 0.9
|
330 |
+
- `adam_beta2`: 0.999
|
331 |
+
- `adam_epsilon`: 1e-08
|
332 |
+
- `max_grad_norm`: 1.0
|
333 |
+
- `num_train_epochs`: 1
|
334 |
+
- `max_steps`: -1
|
335 |
+
- `lr_scheduler_type`: linear
|
336 |
+
- `lr_scheduler_kwargs`: {}
|
337 |
+
- `warmup_ratio`: 0.1
|
338 |
+
- `warmup_steps`: 0
|
339 |
+
- `log_level`: passive
|
340 |
+
- `log_level_replica`: warning
|
341 |
+
- `log_on_each_node`: True
|
342 |
+
- `logging_nan_inf_filter`: True
|
343 |
+
- `save_safetensors`: True
|
344 |
+
- `save_on_each_node`: False
|
345 |
+
- `save_only_model`: False
|
346 |
+
- `restore_callback_states_from_checkpoint`: False
|
347 |
+
- `no_cuda`: False
|
348 |
+
- `use_cpu`: False
|
349 |
+
- `use_mps_device`: False
|
350 |
+
- `seed`: 42
|
351 |
+
- `data_seed`: None
|
352 |
+
- `jit_mode_eval`: False
|
353 |
+
- `use_ipex`: False
|
354 |
+
- `bf16`: True
|
355 |
+
- `fp16`: False
|
356 |
+
- `fp16_opt_level`: O1
|
357 |
+
- `half_precision_backend`: auto
|
358 |
+
- `bf16_full_eval`: False
|
359 |
+
- `fp16_full_eval`: False
|
360 |
+
- `tf32`: None
|
361 |
+
- `local_rank`: 0
|
362 |
+
- `ddp_backend`: None
|
363 |
+
- `tpu_num_cores`: None
|
364 |
+
- `tpu_metrics_debug`: False
|
365 |
+
- `debug`: []
|
366 |
+
- `dataloader_drop_last`: False
|
367 |
+
- `dataloader_num_workers`: 0
|
368 |
+
- `dataloader_prefetch_factor`: None
|
369 |
+
- `past_index`: -1
|
370 |
+
- `disable_tqdm`: False
|
371 |
+
- `remove_unused_columns`: True
|
372 |
+
- `label_names`: None
|
373 |
+
- `load_best_model_at_end`: False
|
374 |
+
- `ignore_data_skip`: False
|
375 |
+
- `fsdp`: []
|
376 |
+
- `fsdp_min_num_params`: 0
|
377 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
378 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
379 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
380 |
+
- `deepspeed`: None
|
381 |
+
- `label_smoothing_factor`: 0.0
|
382 |
+
- `optim`: adamw_torch
|
383 |
+
- `optim_args`: None
|
384 |
+
- `adafactor`: False
|
385 |
+
- `group_by_length`: False
|
386 |
+
- `length_column_name`: length
|
387 |
+
- `ddp_find_unused_parameters`: None
|
388 |
+
- `ddp_bucket_cap_mb`: None
|
389 |
+
- `ddp_broadcast_buffers`: False
|
390 |
+
- `dataloader_pin_memory`: True
|
391 |
+
- `dataloader_persistent_workers`: False
|
392 |
+
- `skip_memory_metrics`: True
|
393 |
+
- `use_legacy_prediction_loop`: False
|
394 |
+
- `push_to_hub`: True
|
395 |
+
- `resume_from_checkpoint`: None
|
396 |
+
- `hub_model_id`: jangedoo/all-MiniLM-L6-v2-nepali
|
397 |
+
- `hub_strategy`: every_save
|
398 |
+
- `hub_private_repo`: False
|
399 |
+
- `hub_always_push`: False
|
400 |
+
- `gradient_checkpointing`: False
|
401 |
+
- `gradient_checkpointing_kwargs`: None
|
402 |
+
- `include_inputs_for_metrics`: False
|
403 |
+
- `eval_do_concat_batches`: True
|
404 |
+
- `fp16_backend`: auto
|
405 |
+
- `push_to_hub_model_id`: all-MiniLM-L6-v2-nepali
|
406 |
+
- `push_to_hub_organization`: None
|
407 |
+
- `mp_parameters`:
|
408 |
+
- `auto_find_batch_size`: False
|
409 |
+
- `full_determinism`: False
|
410 |
+
- `torchdynamo`: None
|
411 |
+
- `ray_scope`: last
|
412 |
+
- `ddp_timeout`: 1800
|
413 |
+
- `torch_compile`: False
|
414 |
+
- `torch_compile_backend`: None
|
415 |
+
- `torch_compile_mode`: None
|
416 |
+
- `dispatch_batches`: None
|
417 |
+
- `split_batches`: None
|
418 |
+
- `include_tokens_per_second`: False
|
419 |
+
- `include_num_input_tokens_seen`: False
|
420 |
+
- `neftune_noise_alpha`: None
|
421 |
+
- `optim_target_modules`: None
|
422 |
+
- `batch_eval_metrics`: False
|
423 |
+
- `eval_on_start`: False
|
424 |
+
- `batch_sampler`: batch_sampler
|
425 |
+
- `multi_dataset_batch_sampler`: proportional
|
426 |
+
|
427 |
+
</details>
|
428 |
+
|
429 |
+
### Training Logs
|
430 |
+
| Epoch | Step | Training Loss | loss | mean_accuracy | negative_mse |
|
431 |
+
|:-----:|:----:|:-------------:|:------:|:-------------:|:------------:|
|
432 |
+
| 0.4 | 50 | 0.0021 | 0.0019 | 0.0111 | -0.3837 |
|
433 |
+
| 0.8 | 100 | 0.002 | 0.0019 | 0.0123 | -0.3794 |
|
434 |
+
| 0.4 | 50 | 0.002 | 0.0019 | 0.0130 | -0.3773 |
|
435 |
+
| 0.8 | 100 | 0.002 | 0.0019 | 0.0135 | -0.3744 |
|
436 |
+
|
437 |
+
|
438 |
+
### Framework Versions
|
439 |
+
- Python: 3.10.12
|
440 |
+
- Sentence Transformers: 3.0.1
|
441 |
+
- Transformers: 4.42.4
|
442 |
+
- PyTorch: 2.3.1+cu121
|
443 |
+
- Accelerate: 0.32.1
|
444 |
+
- Datasets: 2.21.0
|
445 |
+
- Tokenizers: 0.19.1
|
446 |
+
|
447 |
+
## Citation
|
448 |
+
|
449 |
+
### BibTeX
|
450 |
+
|
451 |
+
#### Sentence Transformers
|
452 |
+
```bibtex
|
453 |
+
@inproceedings{reimers-2019-sentence-bert,
|
454 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
455 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
456 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
457 |
+
month = "11",
|
458 |
+
year = "2019",
|
459 |
+
publisher = "Association for Computational Linguistics",
|
460 |
+
url = "https://arxiv.org/abs/1908.10084",
|
461 |
+
}
|
462 |
+
```
|
463 |
+
|
464 |
+
#### MSELoss
|
465 |
+
```bibtex
|
466 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
467 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
468 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
469 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
470 |
+
month = "11",
|
471 |
+
year = "2020",
|
472 |
+
publisher = "Association for Computational Linguistics",
|
473 |
+
url = "https://arxiv.org/abs/2004.09813",
|
474 |
+
}
|
475 |
+
```
|
476 |
+
|
477 |
+
<!--
|
478 |
+
## Glossary
|
479 |
+
|
480 |
+
*Clearly define terms in order to be accessible across audiences.*
|
481 |
+
-->
|
482 |
+
|
483 |
+
<!--
|
484 |
+
## Model Card Authors
|
485 |
+
|
486 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
487 |
+
-->
|
488 |
+
|
489 |
+
<!--
|
490 |
+
## Model Card Contact
|
491 |
+
|
492 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
493 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|