|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MixtureOfTokens configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MoTConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`MoTModel`]. It is used to |
|
instantiate a MixtureOfTokens model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the MixtureOfTokens |
|
[mot](https://huggingface.co/mot) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50257): |
|
Vocabulary size of the MixtureOfTokens model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MoTModel`]. |
|
n_positions (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_inner (`int`, *optional*): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
n_expert (`int`, *optional*, defaults to 32): |
|
The number of experts. |
|
group_size (`int`, *optional*, defaults to 32): |
|
The number of tokens per expert. |
|
expert_size (`int`, *optional*): |
|
The dimensionality of an expert. `None` will set it to n_inner / n_head. |
|
init_scale (`float`, *optional*, defaults to 1.0): |
|
The scaling factor for the initialization of MoTMLP weights. Inactive when creating through `from_pretrained`. |
|
activation_function (`str`, *optional*, defaults to `"gelu_new"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
scale_attn_weights (`bool`, *optional*, defaults to `True`): |
|
Scale attention weights by dividing by sqrt(hidden_size).. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
bos_token_id (`int`, *optional*, defaults to 50256): |
|
Id of the beginning of sentence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 50256): |
|
Id of the end of sentence token in the vocabulary. |
|
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): |
|
Whether to additionally scale attention weights by `1 / layer_idx + 1`. |
|
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): |
|
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention |
|
dot-product/softmax to float() when training with mixed precision. |
|
emit_softmax_over_experts (`bool`, *optional*, defaults to `False`): |
|
Determines the method of redistributing aggregated tokens in the MoT MLP. By default the model uses the merge weights. |
|
This flag switches it to taking a softmax over the experts. |
|
use_discrete_routing (`bool`, *optional*, defaults to `False`): |
|
Discretize the mixing, sending only to the expert with the highest weight. Inference-only. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MoTConfig, MoTModel |
|
|
|
>>> # Initializing a MoT configuration |
|
>>> configuration = MoTConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = MoTModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mot" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "n_embd", |
|
"max_position_embeddings": "n_positions", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50257, |
|
n_positions=1024, |
|
n_embd=768, |
|
n_layer=12, |
|
n_head=12, |
|
n_inner=None, |
|
n_expert=32, |
|
group_size=32, |
|
expert_size=None, |
|
init_scale=1.0, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
attn_pdrop=0.1, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
scale_attn_by_inverse_layer_idx=False, |
|
reorder_and_upcast_attn=False, |
|
emit_softmax_over_experts=False, |
|
use_discrete_routing=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.n_expert = n_expert |
|
self.group_size = group_size |
|
self.expert_size = expert_size |
|
self.init_scale = init_scale |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx |
|
self.reorder_and_upcast_attn = reorder_and_upcast_attn |
|
self.emit_softmax_over_experts = emit_softmax_over_experts |
|
self.use_discrete_routing = use_discrete_routing |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|