jazcollins commited on
Commit
d962893
·
verified ·
1 Parent(s): 3f7e514

Upload 4 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 100280,
3
+ "<|im_end|>": 100279,
4
+ "<|im_start|>": 100278,
5
+ "<|pad|>": 100277
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<image>"
6
+ ],
7
+ "bos_token": "<|endoftext|>",
8
+ "eos_token": "<|endoftext|>",
9
+ "pad_token": "<|pad|>",
10
+ "unk_token": "<|endoftext|>"
11
+ }
tiktoken.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML LLM Foundry authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ from functools import lru_cache
4
+ from typing import Any, Dict, List, Optional, Tuple
5
+
6
+ from transformers import PreTrainedTokenizer
7
+
8
+ DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
9
+
10
+
11
+ # Taken from
12
+ # https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
13
+ @lru_cache()
14
+ def bytes_to_unicode():
15
+ """Returns list of utf-8 byte and a mapping to unicode strings.
16
+
17
+ We specifically avoids mapping to whitespace/control characters the bpe code
18
+ barfs on.
19
+
20
+ The reversible bpe codes work on unicode strings. This means you need a
21
+ large # of unicode characters in your vocab if you want to avoid UNKs. When
22
+ you're at something like a 10B token dataset you end up needing around 5K
23
+ for decent coverage. This is a significant percentage of your normal, say,
24
+ 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
25
+ unicode strings.
26
+ """
27
+ bs = (list(range(ord('!'),
28
+ ord('~') + 1)) + list(range(ord('¡'),
29
+ ord('¬') + 1)) +
30
+ list(range(ord('®'),
31
+ ord('ÿ') + 1)))
32
+ cs = bs[:]
33
+ n = 0
34
+ for b in range(2**8):
35
+ if b not in bs:
36
+ bs.append(b)
37
+ cs.append(2**8 + n)
38
+ n += 1
39
+ cs = [chr(n) for n in cs]
40
+ return dict(zip(bs, cs))
41
+
42
+
43
+ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
44
+ """A thin wrapper around tiktoken to make it compatible with Hugging Face.
45
+
46
+ tokenizers.
47
+
48
+ See HuggingFace for further documentation on general tokenizer methods.
49
+ """
50
+
51
+ model_input_names = ['input_ids', 'attention_mask']
52
+
53
+ def __init__(self,
54
+ model_name: Optional[str] = None,
55
+ encoding_name: Optional[str] = None,
56
+ add_bos_token: bool = False,
57
+ add_eos_token: bool = False,
58
+ use_default_system_prompt: bool = False,
59
+ unk_token: Optional[str] = '<|endoftext|>',
60
+ eos_token: Optional[str] = '<|endoftext|>',
61
+ bos_token: Optional[str] = '<|endoftext|>',
62
+ pad_token: Optional[str] = None,
63
+ errors: str = 'replace',
64
+ **kwargs: Any):
65
+ """Constructor creates a tiktoken tokenizer to use as the underlying.
66
+
67
+ tokenizer.
68
+
69
+ Args:
70
+ model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
71
+ Either model_name or encoding_name must be set, but not both.
72
+ encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
73
+ Either model_name or encoding_name must be set, but not both.
74
+ add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
75
+ add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
76
+ use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
77
+ unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
78
+ eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
79
+ bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
80
+ pad_token (Optional[str], optional): The pad token. Defaults to None.
81
+ errors (str, optional): Paradigm to follow when decoding bytes to UTF-8. See
82
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
83
+ Defaults to `"replace"`.
84
+ """
85
+ try:
86
+ import tiktoken
87
+ except:
88
+ raise ImportError(
89
+ 'You need to install tiktoken to use TiktokenTokenizerWrapper.')
90
+
91
+ # Workaround to make tiktokenizer picklable.
92
+ # https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
93
+ # There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
94
+ import copyreg
95
+ import functools
96
+
97
+ from tiktoken import Encoding # type: ignore (thirdParty)
98
+
99
+ def pickle_Encoding(enc: Encoding):
100
+ return (functools.partial(Encoding,
101
+ enc.name,
102
+ pat_str=enc._pat_str,
103
+ mergeable_ranks=enc._mergeable_ranks,
104
+ special_tokens=enc._special_tokens), ())
105
+
106
+ copyreg.pickle(Encoding, pickle_Encoding)
107
+
108
+ if model_name is not None and encoding_name is not None:
109
+ raise ValueError(
110
+ 'You need to specify either model_name or encoding_name, not both.'
111
+ )
112
+
113
+ self.model_name = model_name
114
+ self.encoding_name = encoding_name
115
+
116
+ if self.model_name is not None:
117
+ self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
118
+ self.model_name)
119
+ elif self.encoding_name is not None:
120
+ self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
121
+ self.encoding_name)
122
+ else:
123
+ raise ValueError(
124
+ 'You need to specify either model_name or encoding_name.')
125
+
126
+ self.add_bos_token = add_bos_token
127
+ self.add_eos_token = add_eos_token
128
+ self.use_default_system_prompt = use_default_system_prompt
129
+
130
+ self.byte_encoder = bytes_to_unicode()
131
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
132
+ self.errors = errors
133
+
134
+ self.decoder: Dict[int, str] = {}
135
+ for i in range(self.encoding.n_vocab):
136
+ try:
137
+ self.encoding.decode_single_token_bytes(i)
138
+ except KeyError:
139
+ continue
140
+ # Taken from
141
+ # https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
142
+ decoding = ''.join([
143
+ bytes_to_unicode()[ord(char)] for char in
144
+ self.encoding.decode_single_token_bytes(i).decode('latin-1')
145
+ ])
146
+ self.decoder[i] = decoding
147
+
148
+ self.encoder: Dict[str, int] = {}
149
+ for i in range(self.encoding.n_vocab):
150
+ if i in self.decoder:
151
+ self.encoder[self.decoder[i]] = i
152
+
153
+ super().__init__(model_name=model_name,
154
+ encoding_name=encoding_name,
155
+ add_bos_token=add_bos_token,
156
+ add_eos_token=add_eos_token,
157
+ use_default_system_prompt=use_default_system_prompt,
158
+ unk_token=unk_token,
159
+ eos_token=eos_token,
160
+ bos_token=bos_token,
161
+ pad_token=pad_token,
162
+ errors=errors,
163
+ **kwargs)
164
+
165
+ @property
166
+ def vocab_size(self) -> int:
167
+ """Returns vocab size."""
168
+ return self.encoding.n_vocab
169
+
170
+ @property
171
+ def is_fast(self) -> bool:
172
+ return False
173
+
174
+ @property
175
+ def default_chat_template(self):
176
+ """Chat ML Template for User/Assistant.
177
+
178
+ Pinning default Chat ML template in case defaults change.
179
+ """
180
+ template = (
181
+ "{% if messages[0]['role'] == 'system' %}"
182
+ '{% set loop_messages = messages[1:] %}'
183
+ "{% set system_message = messages[0]['content'] %}"
184
+ "{% elif USE_DEFAULT_PROMPT == true and not 'system' in messages[0]['role'] %}"
185
+ '{% set loop_messages = messages %}'
186
+ "{% set system_message = 'DEFAULT_SYSTEM_PROMPT' %}"
187
+ '{% else %}'
188
+ '{% set loop_messages = messages %}'
189
+ '{% set system_message = false %}'
190
+ '{% endif %}'
191
+ '{% for message in loop_messages %}'
192
+ '{% if loop.index0 == 0 %}'
193
+ '{% if system_message != false %}'
194
+ "{{ '<|im_start|>system\n' + system_message.strip() + '<|im_end|>\n'}}"
195
+ '{% endif %}'
196
+ "{{ '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
197
+ '{% else %}'
198
+ "{{ '\n' + '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
199
+ '{% endif %}'
200
+ '{% if (add_generation_prompt == true and loop.last) %}'
201
+ "{{ '\n' + '<|im_start|>' + 'assistant' + '\n' }}"
202
+ '{% endif %}'
203
+ '{% endfor %}')
204
+ template = template.replace(
205
+ 'USE_DEFAULT_PROMPT',
206
+ 'true' if self.use_default_system_prompt else 'false')
207
+ template = template.replace('DEFAULT_SYSTEM_PROMPT',
208
+ DEFAULT_SYSTEM_PROMPT)
209
+ return template
210
+
211
+ def get_vocab(self) -> Dict[str, int]:
212
+ """Returns vocab as a dict."""
213
+ # As far as I can tell, we don't require get_vocab to completely work,
214
+ # but when using additional_special_tokens, Hugging Face determines the next
215
+ # token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
216
+ vocab_clone = self.encoder.copy()
217
+ extra_id_index = 0
218
+ candidate_extra_id = f'<extra_id_{extra_id_index}>'
219
+ indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
220
+ vocab_clone.values())
221
+
222
+ # Add enough indices to make get_vocab() the right length
223
+ for index_to_add in indices_to_fill_in:
224
+ # Make sure we don't overwrite a token that already exists
225
+ while candidate_extra_id in vocab_clone:
226
+ extra_id_index += 1
227
+ candidate_extra_id = f'<extra_id_{extra_id_index}>'
228
+
229
+ # Get an index to add and add the item
230
+ vocab_clone[candidate_extra_id] = index_to_add
231
+
232
+ return vocab_clone
233
+
234
+ def _tokenize(self, text: str) -> List[str]:
235
+ """Returns a tokenized string."""
236
+ if not isinstance(text, str):
237
+ raise ValueError(
238
+ f'Expected a string input to _tokenize but got {type(text)}.')
239
+
240
+ tokens = [
241
+ self.decoder[t]
242
+ for t in self.encoding.encode(text, allowed_special='all')
243
+ ]
244
+
245
+ return tokens
246
+
247
+ def _convert_token_to_id(self, token: str) -> Optional[int]:
248
+ """Converts a token (str) in an id using the vocab."""
249
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
250
+
251
+ def _convert_id_to_token(self, index: int) -> Optional[str]:
252
+ """Converts an index (integer) in a token (str) using the vocab."""
253
+ # For tokens in either the gap in ids in the tokenizer, or beyond the range of the tokenizer,
254
+ # we return empty string. This matches the behavior of Hugging Face fast tokenizers,
255
+ # but not slow tokenizers.
256
+ return self.decoder.get(index, '')
257
+
258
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
259
+ """Converts a sequence of tokens (string) in a single string."""
260
+ text = ''.join(tokens)
261
+ text = bytearray([self.byte_decoder[c] for c in text
262
+ ]).decode('utf-8', errors=self.errors)
263
+ return text
264
+
265
+ def build_inputs_with_special_tokens(
266
+ self,
267
+ token_ids_0: List[int],
268
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
269
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
270
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
271
+
272
+ output = bos_token_id + token_ids_0 + eos_token_id
273
+
274
+ if token_ids_1 is not None:
275
+ output = output + bos_token_id + token_ids_1 + eos_token_id
276
+
277
+ return output
278
+
279
+ def get_special_tokens_mask(
280
+ self,
281
+ token_ids_0: List[int],
282
+ token_ids_1: Optional[List[int]] = None,
283
+ already_has_special_tokens: bool = False) -> List[int]:
284
+ """Retrieves sequence ids from a token list that has no special tokens.
285
+
286
+ Function copied from
287
+ https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
288
+
289
+ added. This method is called when adding special tokens using the
290
+ tokenizer `prepare_for_model` or `encode_plus` methods.
291
+
292
+ Args:
293
+ token_ids_0 (`List[int]`):
294
+ List of IDs.
295
+ token_ids_1 (`List[int]`, *optional*):
296
+ Optional second list of IDs for sequence pairs.
297
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
298
+ Whether or not the token list is already formatted with special tokens for the model.
299
+
300
+ Returns:
301
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
302
+ """
303
+ if already_has_special_tokens:
304
+ return super().get_special_tokens_mask(
305
+ token_ids_0=token_ids_0,
306
+ token_ids_1=token_ids_1,
307
+ already_has_special_tokens=True)
308
+
309
+ bos_token_id = [1] if self.add_bos_token else []
310
+ eos_token_id = [1] if self.add_eos_token else []
311
+
312
+ if token_ids_1 is None:
313
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
314
+ return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
315
+ bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
316
+
317
+ def create_token_type_ids_from_sequences(
318
+ self,
319
+ token_ids_0: List[int],
320
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
321
+ sep = [self.sep_token_id]
322
+
323
+ if token_ids_1 is None:
324
+ return len(token_ids_0 + sep) * [0]
325
+ return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
326
+
327
+ def save_vocabulary(self,
328
+ save_directory: str,
329
+ filename_prefix: Optional[str] = None) -> Tuple[str]:
330
+
331
+ # ignore the below type to keep the original signature
332
+ # we are knowingly breaking the signature here, although not 100% certain
333
+ # it doesn't have side effects
334
+ # There is some code in huggingface that calls this function to get the vocab files,
335
+ # but it doesn't seem to access them (or at least checks for their existence
336
+ # before accessing them)
337
+ return (None, None) # type: ignore
338
+
339
+ def sanitize_special_tokens(self) -> int:
340
+ """Make sure that all the special tokens attributes of the tokenizer.
341
+
342
+ (`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
343
+ vocabulary.
344
+
345
+ Add the missing ones to the vocabulary if needed.
346
+
347
+ Return:
348
+ `int`: The number of tokens added in the vocabulary during the operation.
349
+ """
350
+ actual_new_tokens = []
351
+ for token in self.all_special_tokens_extended:
352
+ encoded = self.encoding.encode(token, allowed_special='all')
353
+ if len(encoded) > 1:
354
+ actual_new_tokens.append(token)
355
+
356
+ return self.add_tokens(actual_new_tokens, special_tokens=True)
357
+
358
+
359
+ TiktokenTokenizerWrapper.register_for_auto_class()
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "additional_special_tokens": [
6
+ "<|im_start|>",
7
+ "<|im_end|>",
8
+ "<image>"
9
+ ],
10
+ "auto_map": {
11
+ "AutoTokenizer": [
12
+ "tiktoken.TiktokenTokenizerWrapper",
13
+ null
14
+ ]
15
+ },
16
+ "bos_token": "<|endoftext|>",
17
+ "clean_up_tokenization_spaces": true,
18
+ "encoding_name": null,
19
+ "eos_token": "<|endoftext|>",
20
+ "model_max_length": 8192,
21
+ "model_name": "gpt-4",
22
+ "pad_token": "<|pad|>",
23
+ "tokenizer_class": "TiktokenTokenizerWrapper",
24
+ "unk_token": "<|endoftext|>",
25
+ "use_default_system_prompt": false
26
+ }