File size: 7,084 Bytes
81ecb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "98919397",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/workspace/wav2vec-1b-cv8-ir'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "b1152dd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoFeatureExtractor, pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d50c1e8f",
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "Could not load model ./ with any of the following classes: (<class 'transformers.models.auto.modeling_auto.AutoModelForCTC'>, <class 'transformers.models.auto.modeling_auto.AutoModelForSpeechSeq2Seq'>, <class 'transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC'>).",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Input \u001b[0;32mIn [9]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpipeline\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mautomatic-speech-recognition\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m./\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/pipelines/__init__.py:541\u001b[0m, in \u001b[0;36mpipeline\u001b[0;34m(task, model, config, tokenizer, feature_extractor, framework, revision, use_fast, use_auth_token, model_kwargs, pipeline_class, **kwargs)\u001b[0m\n\u001b[1;32m    537\u001b[0m \u001b[38;5;66;03m# Infer the framework from the model\u001b[39;00m\n\u001b[1;32m    538\u001b[0m \u001b[38;5;66;03m# Forced if framework already defined, inferred if it's None\u001b[39;00m\n\u001b[1;32m    539\u001b[0m \u001b[38;5;66;03m# Will load the correct model if possible\u001b[39;00m\n\u001b[1;32m    540\u001b[0m model_classes \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m: targeted_task[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m], \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m: targeted_task[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n\u001b[0;32m--> 541\u001b[0m framework, model \u001b[38;5;241m=\u001b[39m \u001b[43minfer_framework_load_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    542\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    543\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmodel_classes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_classes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    544\u001b[0m \u001b[43m    \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    545\u001b[0m \u001b[43m    \u001b[49m\u001b[43mframework\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mframework\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    546\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    547\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    548\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmodel_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    549\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    551\u001b[0m model_config \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mconfig\n\u001b[1;32m    553\u001b[0m load_tokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtype\u001b[39m(model_config) \u001b[38;5;129;01min\u001b[39;00m TOKENIZER_MAPPING \u001b[38;5;129;01mor\u001b[39;00m model_config\u001b[38;5;241m.\u001b[39mtokenizer_class \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/pipelines/base.py:235\u001b[0m, in \u001b[0;36minfer_framework_load_model\u001b[0;34m(model, config, model_classes, task, framework, **model_kwargs)\u001b[0m\n\u001b[1;32m    232\u001b[0m             \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m    234\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 235\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCould not load model \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m with any of the following classes: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mclass_tuple\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    237\u001b[0m framework \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m model\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTF\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    238\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m framework, model\n",
      "\u001b[0;31mValueError\u001b[0m: Could not load model ./ with any of the following classes: (<class 'transformers.models.auto.modeling_auto.AutoModelForCTC'>, <class 'transformers.models.auto.modeling_auto.AutoModelForSpeechSeq2Seq'>, <class 'transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC'>)."
     ]
    }
   ],
   "source": [
    "pipeline(\"automatic-speech-recognition\", model='./')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}