jdalegonzalez commited on
Commit
3d9844c
·
verified ·
1 Parent(s): 62a9c2b

Model save

Browse files
README.md CHANGED
@@ -1,182 +1,66 @@
1
  ---
2
  library_name: transformers
3
- language:
4
- - en
5
- - zh
6
- base_model:
7
- - superb/wav2vec2-base-superb-sid
 
 
 
 
8
  ---
9
 
10
- # Model Card for Model ID
 
11
 
12
- The model is intended to speaker identification for audio segments taken from the Mandarin Monkey podcast.
13
- It was created based the speakerbox code. https://councildataproject.org/speakerbox/
14
 
 
 
 
 
15
 
 
16
 
17
- ## Model Details
18
 
19
- ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
 
23
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
 
25
- - **Developed by:** jdalegonzalez
26
- - **Funded by [optional]:** None. sigh
27
- - **Model type:** Wave2Vec audio classifier
28
- - **Language(s) (NLP):** English and Chinese
29
- - **License:** Meh?
30
- - **Finetuned from model:** superb/wav2vec2-base-superb-sid
31
 
32
- ## Uses
33
 
34
- Right now, the only thing the model will do is identify which speaker (between the two hosts of Mandarin Monkey)
35
- is likely speaking a specific audio clip. In the future, it could be expanded to support
36
- more speakers, more podcasts, etc...
37
 
38
- ### Direct Use
 
 
 
 
 
 
 
 
39
 
40
- I'm not sure what direct use is possible other than diarizing a Mandarin Monkey podcast.
41
 
42
- [More Information Needed]
 
 
 
 
 
 
43
 
44
- ### Out-of-Scope Use
45
 
46
- Really, almost any use other than identifying which host is speaking a particular
47
- audio clip is out-of-scope.
48
 
49
- [More Information Needed]
50
-
51
- ## Bias, Risks, and Limitations
52
-
53
- There is no warranty expressed or implied. It works for me. It may do
54
- nothing for you. This is experimental and shouldn't be the basis
55
- for any commericial activity.
56
-
57
- [More Information Needed]
58
-
59
- ### Recommendations
60
-
61
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
62
-
63
- ## How to Get Started with the Model
64
-
65
- Use the code below to get started with the model.
66
-
67
- [More Information Needed]
68
-
69
- ## Training Details
70
-
71
- ### Training Data
72
-
73
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
74
-
75
- [More Information Needed]
76
-
77
- ### Training Procedure
78
-
79
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
80
-
81
- #### Preprocessing [optional]
82
-
83
- [More Information Needed]
84
-
85
-
86
- #### Training Hyperparameters
87
-
88
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
89
-
90
- #### Speeds, Sizes, Times [optional]
91
-
92
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
93
-
94
- [More Information Needed]
95
-
96
- ## Evaluation
97
-
98
- <!-- This section describes the evaluation protocols and provides the results. -->
99
-
100
- ### Testing Data, Factors & Metrics
101
-
102
- #### Testing Data
103
-
104
- <!-- This should link to a Dataset Card if possible. -->
105
-
106
- [More Information Needed]
107
-
108
- #### Factors
109
-
110
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Metrics
115
-
116
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
117
-
118
- [More Information Needed]
119
-
120
- ### Results
121
-
122
- [More Information Needed]
123
-
124
- #### Summary
125
-
126
-
127
-
128
- ## Model Examination [optional]
129
-
130
- <!-- Relevant interpretability work for the model goes here -->
131
-
132
- [More Information Needed]
133
-
134
- ## Environmental Impact
135
-
136
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
137
-
138
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
139
-
140
- - **Hardware Type:** [More Information Needed]
141
- - **Hours used:** [More Information Needed]
142
- - **Cloud Provider:** [More Information Needed]
143
- - **Compute Region:** [More Information Needed]
144
- - **Carbon Emitted:** [More Information Needed]
145
-
146
- ## Technical Specifications [optional]
147
-
148
- ### Model Architecture and Objective
149
-
150
- [More Information Needed]
151
-
152
- ### Compute Infrastructure
153
-
154
- [More Information Needed]
155
-
156
- #### Hardware
157
-
158
- [More Information Needed]
159
-
160
- #### Software
161
-
162
- [More Information Needed]
163
-
164
- ## Citation [optional]
165
-
166
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
167
-
168
- **BibTeX:**
169
-
170
- [More Information Needed]
171
-
172
- **APA:**
173
-
174
- [More Information Needed]
175
-
176
- ## Model Card Authors [optional]
177
-
178
- [More Information Needed]
179
-
180
- ## Model Card Contact
181
-
182
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: superb/wav2vec2-base-superb-sid
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: transcribe-monkey
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # transcribe-monkey
 
18
 
19
+ This model is a fine-tuned version of [superb/wav2vec2-base-superb-sid](https://huggingface.co/superb/wav2vec2-base-superb-sid) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2787
22
+ - Accuracy: 0.9677
23
 
24
+ ## Model description
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
31
 
32
+ ## Training and evaluation data
33
 
34
+ More information needed
 
 
 
 
 
35
 
36
+ ## Training procedure
37
 
38
+ ### Training hyperparameters
 
 
39
 
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 3e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 5
49
 
50
+ ### Training results
51
 
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 0.1226 | 1.0 | 212 | 0.4222 | 0.9516 |
55
+ | 0.2144 | 2.0 | 424 | 0.2416 | 0.9516 |
56
+ | 0.0888 | 3.0 | 636 | 0.2240 | 0.9677 |
57
+ | 0.0004 | 4.0 | 848 | 0.3074 | 0.9677 |
58
+ | 0.0204 | 5.0 | 1060 | 0.2787 | 0.9677 |
59
 
 
60
 
61
+ ### Framework versions
 
62
 
63
+ - Transformers 4.46.3
64
+ - Pytorch 2.3.0
65
+ - Datasets 3.1.0
66
+ - Tokenizers 0.20.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2eb97bffb4597dfd1e40a1b08290e92aa160fb12f539a1637c298dcc861505dd
3
  size 378302484
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b295e4a82d14d111e0be27af78e35aadf8396900d92da59191b068e81e6ae1a
3
  size 378302484
runs/Jan12_17-52-52_AxioMBP-PFMH96X-dgonzalez/events.out.tfevents.1736722373.AxioMBP-PFMH96X-dgonzalez.54741.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cbfbfeca3e066dac8e68f8be7f8ede2ca9378153157f37ca24f35c5e4a64f098
3
- size 30522
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6357f7f88fdaa85bf2c74c40b19b0bee4f0c4cd87d78c23547ded5fa810974e9
3
+ size 31199