File size: 6,779 Bytes
516a027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for when the training and inference graphs are the same."""

import os
import tempfile

import tensorflow as tf

from tensorflow_model_optimization.python.core.common.keras.compression.algorithms import same_training_and_inference as svd
from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.keras.testing import test_utils_mnist


def _build_model():
  i = keras.layers.Input(shape=(28, 28), name='input')
  x = keras.layers.Reshape((28, 28, 1))(i)
  x = keras.layers.Conv2D(
      20, 5, activation='relu', padding='valid', name='conv1'
  )(x)
  x = keras.layers.MaxPool2D(2, 2)(x)
  x = keras.layers.Conv2D(
      50, 5, activation='relu', padding='valid', name='conv2'
  )(x)
  x = keras.layers.MaxPool2D(2, 2)(x)
  x = keras.layers.Flatten()(x)
  x = keras.layers.Dense(500, activation='relu', name='fc1')(x)
  output = keras.layers.Dense(10, name='fc2')(x)

  model = keras.Model(inputs=[i], outputs=[output])
  return model


def _get_dataset():
  mnist = keras.datasets.mnist
  (x_train, y_train), (x_test, y_test) = mnist.load_data()
  x_train, x_test = x_train / 255.0, x_test / 255.0
  # Use subset of 60000 examples to keep unit test speed fast.
  x_train = x_train[0:1000]
  y_train = y_train[0:1000]
  return (x_train, y_train), (x_test, y_test)


def _train_model(model):
  loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)

  model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])

  (x_train, y_train), _ = _get_dataset()

  model.fit(x_train, y_train, epochs=1)


def _save_as_saved_model(model):
  saved_model_dir = tempfile.mkdtemp()
  model.save(saved_model_dir)
  return saved_model_dir


# TODO(tfmot): reuse existing test utilities.
def _convert_to_tflite(saved_model_dir):
  _, tflite_file = tempfile.mkstemp()

  converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
  tflite_model = converter.convert()

  with open(tflite_file, 'wb') as f:
    f.write(tflite_model)

  return tflite_file


def _get_directory_size_in_bytes(directory):
  total = 0
  try:
    for entry in os.scandir(directory):
      if entry.is_file():
        # if it's a file, use stat() function
        total += entry.stat().st_size
      elif entry.is_dir():
        # if it's a directory, recursively call this function
        total += _get_directory_size_in_bytes(entry.path)
  except NotADirectoryError:
    # if `directory` isn't a directory, get the file size then
    return os.path.getsize(directory)
  except PermissionError:
    # if for whatever reason we can't open the folder, return 0
    return 0
  return total


class FunctionalTest(tf.test.TestCase):

  # TODO(tfmot): can simplify to single layer test that checks exact
  # dimensions of weights.
  def testSVD_ReducesSavedModelSize(self):
    model = _build_model()

    original_saved_model_dir = _save_as_saved_model(model)

    compressed_model = svd.SVD(rank=16).compress_model(model)

    saved_model_dir = _save_as_saved_model(compressed_model)

    original_size = _get_directory_size_in_bytes(original_saved_model_dir)
    compressed_size = _get_directory_size_in_bytes(saved_model_dir)

    self.assertLess(compressed_size, original_size / 3)

  def testSVD_HasReasonableAccuracy_TF(self):
    model = _build_model()

    compressed_model = svd.SVD(rank=16).compress_model(model)

    _train_model(compressed_model)

    _, (x_test, y_test) = _get_dataset()

    loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)

    compressed_model.compile(
        optimizer='adam', loss=loss_fn, metrics=['accuracy'])

    results = compressed_model.evaluate(x_test, y_test)

    self.assertGreater(results[1], 0.60)

  def testSVD_ReducesTFLiteModelSize(self):
    model = _build_model()

    original_saved_model_dir = _save_as_saved_model(model)
    original_tflite_file = _convert_to_tflite(original_saved_model_dir)

    compressed_model = svd.SVD(rank=16).compress_model(model)

    saved_model_dir = _save_as_saved_model(compressed_model)
    compressed_tflite_file = _convert_to_tflite(saved_model_dir)

    original_size = os.path.getsize(original_tflite_file)
    compressed_size = os.path.getsize(compressed_tflite_file)

    self.assertLess(compressed_size, original_size / 6)

  def testSVD_HasReasonableAccuracy_TFLite(self):
    model = _build_model()

    compressed_model = svd.SVD(rank=16).compress_model(model)

    _train_model(compressed_model)

    saved_model_dir = _save_as_saved_model(compressed_model)
    compressed_tflite_file = _convert_to_tflite(saved_model_dir)

    accuracy = test_utils_mnist.eval_tflite(compressed_tflite_file)

    self.assertGreater(accuracy, 0.60)

  # TODO(tfmot): can simplify to single layer test.
  def testSVD_BreaksDownLayerWeights(self):
    model = _build_model()

    first_conv_layer = model.layers[2]
    self.assertLen(first_conv_layer.weights, 2)

    compressed_model = svd.SVD(rank=16).compress_model(model)

    first_conv_layer = compressed_model.layers[2]

    self.assertLen(first_conv_layer.weights, 3)

  # TODO(tfmot): can simplify to single layer test.
  def testSVD_PreservesPretrainedWeights(self):
    i = keras.layers.Input(shape=(2), name='input')
    output = keras.layers.Dense(3, name='fc1')(i)
    model = keras.Model(inputs=[i], outputs=[output])

    dense_layer_weights = model.layers[1].get_weights()

    algorithm = svd.SVD(rank=1)
    compressed_model = algorithm.compress_model(model)

    dense_layer_compressed_weights = compressed_model.layers[1].get_weights()

    # kernel
    algorithm.weight_reprs = []
    algorithm.init_training_weights(dense_layer_weights[0])
    w1_repr, w2_repr = algorithm.weight_reprs
    assert (w1_repr.kwargs['initializer'](None) == \
             dense_layer_compressed_weights[0]).numpy().all()
    assert (w2_repr.kwargs['initializer'](None) == \
             dense_layer_compressed_weights[1]).numpy().all()

    # bias
    assert (dense_layer_weights[1] == dense_layer_compressed_weights[2]).all()


if __name__ == '__main__':
  tf.test.main()