Mixtral_ether / misc.py
jeduardogruiz's picture
Upload 22 files
516a027 verified
raw
history blame
5.36 kB
# Copyright 2019, The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Misc."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import tensorflow as tf
from tensorflow_model_optimization.python.core.internal.tensor_encoding.core import encoding_stage
@encoding_stage.tf_style_encoding_stage
class SplitBySmallValueEncodingStage(encoding_stage.EncodingStageInterface):
"""Encoding stage splitting the input by small values.
This encoding stage will split the input into two outputs: the value and the
indices of the elements whose absolute value is larger than a certain
threshold. The elements smaller than the threshold is then decoded to zero.
"""
ENCODED_INDICES_KEY = 'indices'
ENCODED_VALUES_KEY = 'non_zero_floats'
THRESHOLD_PARAMS_KEY = 'threshold'
def __init__(self, threshold=1e-8):
"""Initializer for the SplitBySmallValueEncodingStage.
Args:
threshold: The threshold of the small weights to be set to zero.
"""
self._threshold = threshold
@property
def name(self):
"""See base class."""
return 'split_by_small_value'
@property
def compressible_tensors_keys(self):
"""See base class."""
return [
self.ENCODED_VALUES_KEY,
self.ENCODED_INDICES_KEY,
]
@property
def commutes_with_sum(self):
"""See base class."""
return False
@property
def decode_needs_input_shape(self):
"""See base class."""
return True
def get_params(self):
"""See base class."""
encode_params = collections.OrderedDict([(self.THRESHOLD_PARAMS_KEY,
self._threshold)])
decode_params = collections.OrderedDict()
return encode_params, decode_params
def encode(self, x, encode_params):
"""See base class."""
threshold = tf.cast(encode_params[self.THRESHOLD_PARAMS_KEY], x.dtype)
indices = tf.cast(tf.compat.v2.where(tf.abs(x) > threshold), tf.int32)
non_zero_x = tf.gather_nd(x, indices)
indices = tf.squeeze(indices, axis=1)
return collections.OrderedDict([
(self.ENCODED_INDICES_KEY, indices),
(self.ENCODED_VALUES_KEY, non_zero_x),
])
def decode(self,
encoded_tensors,
decode_params,
num_summands=None,
shape=None):
"""See base class."""
del decode_params, num_summands # Unused.
indices = encoded_tensors[self.ENCODED_INDICES_KEY]
non_zero_x = encoded_tensors[self.ENCODED_VALUES_KEY]
indices = tf.expand_dims(indices, 1)
indices = tf.cast(indices, tf.int64)
shape = tf.cast(shape, tf.int64)
sparse_tensor = tf.SparseTensor(indices=indices, values=non_zero_x,
dense_shape=shape)
decoded_x = tf.sparse.to_dense(sparse_tensor)
return decoded_x
@encoding_stage.tf_style_encoding_stage
class DifferenceBetweenIntegersEncodingStage(
encoding_stage.EncodingStageInterface):
"""Encoding stage taking the difference between a sequence of integers.
This encoding stage can be useful when the original integers can be large, but
the difference of the integers are much smaller values and have a more compact
representation. For example, it can be combined with the
`SplitBySmallValueEncodingStage` to further compress the increasing sequence
of indices.
The encode method expects a tensor with 1 dimension and with integer dtype.
"""
ENCODED_VALUES_KEY = 'difference_between_integers'
@property
def name(self):
"""See base class."""
return 'difference_between_integers'
@property
def compressible_tensors_keys(self):
"""See base class."""
return [
self.ENCODED_VALUES_KEY,
]
@property
def commutes_with_sum(self):
"""See base class."""
return False
@property
def decode_needs_input_shape(self):
"""See base class."""
return False
def get_params(self):
"""See base class."""
return collections.OrderedDict(), collections.OrderedDict()
def encode(self, x, encode_params):
"""See base class."""
del encode_params # Unused.
if x.shape.ndims != 1:
raise ValueError('Number of dimensions must be 1. Shape of x: %s' %
x.shape)
if not x.dtype.is_integer:
raise TypeError(
'Unsupported input type: %s. Support only integer types.' % x.dtype)
diff_x = x - tf.concat([[0], x[:-1]], 0)
return collections.OrderedDict([(self.ENCODED_VALUES_KEY, diff_x)])
def decode(self,
encoded_tensors,
decode_params,
num_summands=None,
shape=None):
"""See base class."""
del decode_params, num_summands, shape # Unused
return tf.cumsum(encoded_tensors[self.ENCODED_VALUES_KEY])