File size: 2,318 Bytes
70d2115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
      args: samsum
    metrics:
    - name: Rouge1
      type: rouge
      value: 47.6993
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-samsum

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3538
- Rouge1: 47.6993
- Rouge2: 24.0887
- Rougel: 40.2819
- Rougelsum: 43.8375
- Gen Len: 17.0842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4327        | 1.0   | 1841 | 1.3620          | 47.1926 | 23.4593 | 39.7385 | 43.2514   | 17.0623 |
| 1.3235        | 2.0   | 3683 | 1.3563          | 46.7874 | 23.1964 | 39.4248 | 42.9616   | 16.9585 |
| 1.2477        | 3.0   | 5524 | 1.3538          | 47.6993 | 24.0887 | 40.2819 | 43.8375   | 17.0842 |
| 1.208         | 4.0   | 7366 | 1.3555          | 47.6355 | 24.0054 | 40.1665 | 43.6581   | 17.0965 |
| 1.193         | 5.0   | 9205 | 1.3563          | 47.6582 | 23.9906 | 40.1561 | 43.7082   | 17.1477 |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0