jialicheng commited on
Commit
f0f2953
·
verified ·
1 Parent(s): 3c13bfd

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-50
4
+ tags:
5
+ - image-classification
6
+ - vision
7
+ - generated_from_trainer
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: resnet-50
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # resnet-50
19
+
20
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar100 dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5732
23
+ - Accuracy: 0.8286
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
+ - train_batch_size: 128
44
+ - eval_batch_size: 256
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 300
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
54
+ | 4.5562 | 1.0 | 333 | 4.5546 | 0.1308 |
55
+ | 4.4468 | 2.0 | 666 | 4.4367 | 0.145 |
56
+ | 4.3538 | 3.0 | 999 | 4.3131 | 0.1859 |
57
+ | 4.2283 | 4.0 | 1332 | 4.1398 | 0.2269 |
58
+ | 4.0124 | 5.0 | 1665 | 3.9074 | 0.2647 |
59
+ | 3.8102 | 6.0 | 1998 | 3.6060 | 0.3 |
60
+ | 3.5657 | 7.0 | 2331 | 3.3058 | 0.3334 |
61
+ | 3.3654 | 8.0 | 2664 | 3.0348 | 0.3695 |
62
+ | 3.1954 | 9.0 | 2997 | 2.7789 | 0.3996 |
63
+ | 3.0844 | 10.0 | 3330 | 2.5592 | 0.4416 |
64
+ | 2.9031 | 11.0 | 3663 | 2.3489 | 0.4707 |
65
+ | 2.7383 | 12.0 | 3996 | 2.1829 | 0.4907 |
66
+ | 2.6365 | 13.0 | 4329 | 2.0404 | 0.5173 |
67
+ | 2.4545 | 14.0 | 4662 | 1.9062 | 0.5402 |
68
+ | 2.3891 | 15.0 | 4995 | 1.7761 | 0.5673 |
69
+ | 2.2835 | 16.0 | 5328 | 1.6824 | 0.5783 |
70
+ | 2.3137 | 17.0 | 5661 | 1.6064 | 0.5932 |
71
+ | 2.1022 | 18.0 | 5994 | 1.5257 | 0.6081 |
72
+ | 2.0252 | 19.0 | 6327 | 1.4517 | 0.6221 |
73
+ | 2.2526 | 20.0 | 6660 | 1.3901 | 0.6279 |
74
+ | 1.963 | 21.0 | 6993 | 1.3430 | 0.6425 |
75
+ | 1.9656 | 22.0 | 7326 | 1.3013 | 0.6413 |
76
+ | 1.8864 | 23.0 | 7659 | 1.2617 | 0.6524 |
77
+ | 1.887 | 24.0 | 7992 | 1.2376 | 0.6584 |
78
+ | 1.7976 | 25.0 | 8325 | 1.1766 | 0.6717 |
79
+ | 1.7482 | 26.0 | 8658 | 1.1570 | 0.6758 |
80
+ | 1.7816 | 27.0 | 8991 | 1.1237 | 0.6834 |
81
+ | 1.7477 | 28.0 | 9324 | 1.1027 | 0.6878 |
82
+ | 1.7196 | 29.0 | 9657 | 1.0760 | 0.6899 |
83
+ | 1.7635 | 30.0 | 9990 | 1.0600 | 0.6934 |
84
+ | 1.6424 | 31.0 | 10323 | 1.0388 | 0.6975 |
85
+ | 1.6704 | 32.0 | 10656 | 1.0172 | 0.7053 |
86
+ | 1.6393 | 33.0 | 10989 | 1.0008 | 0.7106 |
87
+ | 1.5795 | 34.0 | 11322 | 0.9909 | 0.7126 |
88
+ | 1.6104 | 35.0 | 11655 | 0.9561 | 0.7199 |
89
+ | 1.587 | 36.0 | 11988 | 0.9593 | 0.7168 |
90
+ | 1.6046 | 37.0 | 12321 | 0.9299 | 0.7267 |
91
+ | 1.5859 | 38.0 | 12654 | 0.9168 | 0.7271 |
92
+ | 1.5149 | 39.0 | 12987 | 0.9122 | 0.7301 |
93
+ | 1.6676 | 40.0 | 13320 | 0.8964 | 0.7358 |
94
+ | 1.4889 | 41.0 | 13653 | 0.8964 | 0.7345 |
95
+ | 1.4958 | 42.0 | 13986 | 0.8821 | 0.7374 |
96
+ | 1.4397 | 43.0 | 14319 | 0.8733 | 0.7441 |
97
+ | 1.4745 | 44.0 | 14652 | 0.8683 | 0.7397 |
98
+ | 1.4804 | 45.0 | 14985 | 0.8614 | 0.7429 |
99
+ | 1.4372 | 46.0 | 15318 | 0.8450 | 0.7472 |
100
+ | 1.4181 | 47.0 | 15651 | 0.8381 | 0.7479 |
101
+ | 1.4067 | 48.0 | 15984 | 0.8238 | 0.7533 |
102
+ | 1.4155 | 49.0 | 16317 | 0.8283 | 0.7471 |
103
+ | 1.5512 | 50.0 | 16650 | 0.8113 | 0.7546 |
104
+ | 1.3912 | 51.0 | 16983 | 0.8014 | 0.7582 |
105
+ | 1.4082 | 52.0 | 17316 | 0.8070 | 0.7574 |
106
+ | 1.4463 | 53.0 | 17649 | 0.7986 | 0.7588 |
107
+ | 1.3902 | 54.0 | 17982 | 0.7865 | 0.7629 |
108
+ | 1.3382 | 55.0 | 18315 | 0.7810 | 0.7634 |
109
+ | 1.3448 | 56.0 | 18648 | 0.7727 | 0.7652 |
110
+ | 1.283 | 57.0 | 18981 | 0.7681 | 0.7664 |
111
+ | 1.2979 | 58.0 | 19314 | 0.7637 | 0.7704 |
112
+ | 1.3176 | 59.0 | 19647 | 0.7614 | 0.7712 |
113
+ | 1.4151 | 60.0 | 19980 | 0.7597 | 0.7671 |
114
+ | 1.3055 | 61.0 | 20313 | 0.7513 | 0.7697 |
115
+ | 1.3024 | 62.0 | 20646 | 0.7510 | 0.7728 |
116
+ | 1.3113 | 63.0 | 20979 | 0.7433 | 0.7731 |
117
+ | 1.2962 | 64.0 | 21312 | 0.7500 | 0.77 |
118
+ | 1.28 | 65.0 | 21645 | 0.7307 | 0.7781 |
119
+ | 1.2518 | 66.0 | 21978 | 0.7301 | 0.7773 |
120
+ | 1.2792 | 67.0 | 22311 | 0.7286 | 0.7762 |
121
+ | 1.2137 | 68.0 | 22644 | 0.7210 | 0.7781 |
122
+ | 1.2598 | 69.0 | 22977 | 0.7219 | 0.7784 |
123
+ | 1.4021 | 70.0 | 23310 | 0.7204 | 0.7803 |
124
+ | 1.3074 | 71.0 | 23643 | 0.7066 | 0.7822 |
125
+ | 1.2205 | 72.0 | 23976 | 0.7121 | 0.7808 |
126
+ | 1.2696 | 73.0 | 24309 | 0.7162 | 0.7799 |
127
+ | 1.2083 | 74.0 | 24642 | 0.7031 | 0.786 |
128
+ | 1.2186 | 75.0 | 24975 | 0.6934 | 0.7876 |
129
+ | 1.2252 | 76.0 | 25308 | 0.7062 | 0.7849 |
130
+ | 1.303 | 77.0 | 25641 | 0.7015 | 0.7846 |
131
+ | 1.2131 | 78.0 | 25974 | 0.6964 | 0.7861 |
132
+ | 1.1887 | 79.0 | 26307 | 0.6877 | 0.7867 |
133
+ | 1.6358 | 80.0 | 26640 | 0.6987 | 0.7872 |
134
+ | 1.1976 | 81.0 | 26973 | 0.6891 | 0.7887 |
135
+ | 1.1602 | 82.0 | 27306 | 0.6797 | 0.7894 |
136
+ | 1.2226 | 83.0 | 27639 | 0.6890 | 0.7883 |
137
+ | 1.2658 | 84.0 | 27972 | 0.6824 | 0.7893 |
138
+ | 1.0837 | 85.0 | 28305 | 0.6840 | 0.7902 |
139
+ | 1.112 | 86.0 | 28638 | 0.6754 | 0.7933 |
140
+ | 1.2667 | 87.0 | 28971 | 0.6650 | 0.7964 |
141
+ | 1.1847 | 88.0 | 29304 | 0.6716 | 0.7926 |
142
+ | 1.1431 | 89.0 | 29637 | 0.6763 | 0.7934 |
143
+ | 1.4006 | 90.0 | 29970 | 0.6723 | 0.7945 |
144
+ | 1.1093 | 91.0 | 30303 | 0.6668 | 0.7945 |
145
+ | 1.1468 | 92.0 | 30636 | 0.6612 | 0.7958 |
146
+ | 1.1783 | 93.0 | 30969 | 0.6685 | 0.795 |
147
+ | 1.1586 | 94.0 | 31302 | 0.6570 | 0.7964 |
148
+ | 1.1325 | 95.0 | 31635 | 0.6605 | 0.7946 |
149
+ | 1.1619 | 96.0 | 31968 | 0.6538 | 0.7963 |
150
+ | 1.1547 | 97.0 | 32301 | 0.6510 | 0.7992 |
151
+ | 1.198 | 98.0 | 32634 | 0.6495 | 0.8014 |
152
+ | 1.0816 | 99.0 | 32967 | 0.6501 | 0.8008 |
153
+ | 1.1854 | 100.0 | 33300 | 0.6525 | 0.8007 |
154
+ | 1.1589 | 101.0 | 33633 | 0.6484 | 0.8004 |
155
+ | 1.1621 | 102.0 | 33966 | 0.6456 | 0.8028 |
156
+ | 1.1066 | 103.0 | 34299 | 0.6549 | 0.8006 |
157
+ | 1.1108 | 104.0 | 34632 | 0.6475 | 0.8016 |
158
+ | 1.1329 | 105.0 | 34965 | 0.6420 | 0.802 |
159
+ | 1.084 | 106.0 | 35298 | 0.6432 | 0.8011 |
160
+ | 1.0535 | 107.0 | 35631 | 0.6415 | 0.8026 |
161
+ | 1.0708 | 108.0 | 35964 | 0.6415 | 0.8006 |
162
+ | 1.0657 | 109.0 | 36297 | 0.6398 | 0.8033 |
163
+ | 1.1575 | 110.0 | 36630 | 0.6462 | 0.802 |
164
+ | 1.0678 | 111.0 | 36963 | 0.6390 | 0.8028 |
165
+ | 1.1565 | 112.0 | 37296 | 0.6506 | 0.8012 |
166
+ | 1.0379 | 113.0 | 37629 | 0.6424 | 0.8023 |
167
+ | 1.0942 | 114.0 | 37962 | 0.6378 | 0.8032 |
168
+ | 1.0977 | 115.0 | 38295 | 0.6248 | 0.8069 |
169
+ | 1.1348 | 116.0 | 38628 | 0.6264 | 0.8082 |
170
+ | 1.0204 | 117.0 | 38961 | 0.6255 | 0.808 |
171
+ | 1.0201 | 118.0 | 39294 | 0.6240 | 0.8088 |
172
+ | 1.1539 | 119.0 | 39627 | 0.6252 | 0.8064 |
173
+ | 1.3025 | 120.0 | 39960 | 0.6305 | 0.805 |
174
+ | 1.0533 | 121.0 | 40293 | 0.6284 | 0.8065 |
175
+ | 0.9733 | 122.0 | 40626 | 0.6237 | 0.8075 |
176
+ | 1.0752 | 123.0 | 40959 | 0.6218 | 0.8098 |
177
+ | 1.1421 | 124.0 | 41292 | 0.6187 | 0.807 |
178
+ | 0.9842 | 125.0 | 41625 | 0.6294 | 0.8078 |
179
+ | 1.06 | 126.0 | 41958 | 0.6174 | 0.8094 |
180
+ | 1.1292 | 127.0 | 42291 | 0.6206 | 0.8084 |
181
+ | 1.0878 | 128.0 | 42624 | 0.6144 | 0.8103 |
182
+ | 1.0766 | 129.0 | 42957 | 0.6126 | 0.8104 |
183
+ | 1.2749 | 130.0 | 43290 | 0.6123 | 0.8106 |
184
+ | 1.1147 | 131.0 | 43623 | 0.6128 | 0.8105 |
185
+ | 1.0357 | 132.0 | 43956 | 0.6060 | 0.8138 |
186
+ | 1.0424 | 133.0 | 44289 | 0.6062 | 0.8146 |
187
+ | 1.0532 | 134.0 | 44622 | 0.6124 | 0.8121 |
188
+ | 1.0163 | 135.0 | 44955 | 0.6136 | 0.8123 |
189
+ | 1.0789 | 136.0 | 45288 | 0.6144 | 0.8122 |
190
+ | 0.9845 | 137.0 | 45621 | 0.6118 | 0.8114 |
191
+ | 1.0238 | 138.0 | 45954 | 0.6074 | 0.8123 |
192
+ | 1.0287 | 139.0 | 46287 | 0.6099 | 0.8135 |
193
+ | 1.1634 | 140.0 | 46620 | 0.6043 | 0.8151 |
194
+ | 1.0906 | 141.0 | 46953 | 0.6071 | 0.8134 |
195
+ | 1.0672 | 142.0 | 47286 | 0.6001 | 0.8168 |
196
+ | 1.0423 | 143.0 | 47619 | 0.6077 | 0.8144 |
197
+ | 1.1038 | 144.0 | 47952 | 0.6028 | 0.8155 |
198
+ | 0.9353 | 145.0 | 48285 | 0.6065 | 0.8117 |
199
+ | 1.0238 | 146.0 | 48618 | 0.5979 | 0.8151 |
200
+ | 1.0313 | 147.0 | 48951 | 0.6022 | 0.8149 |
201
+ | 1.0897 | 148.0 | 49284 | 0.6008 | 0.8179 |
202
+ | 0.9711 | 149.0 | 49617 | 0.6040 | 0.8148 |
203
+ | 1.2002 | 150.0 | 49950 | 0.6018 | 0.8162 |
204
+ | 1.0154 | 151.0 | 50283 | 0.6042 | 0.816 |
205
+ | 1.0561 | 152.0 | 50616 | 0.6042 | 0.8145 |
206
+ | 0.9962 | 153.0 | 50949 | 0.6011 | 0.8158 |
207
+ | 1.0812 | 154.0 | 51282 | 0.5961 | 0.8165 |
208
+ | 1.0307 | 155.0 | 51615 | 0.6054 | 0.8152 |
209
+ | 0.991 | 156.0 | 51948 | 0.6019 | 0.814 |
210
+ | 1.0396 | 157.0 | 52281 | 0.6014 | 0.815 |
211
+ | 1.0524 | 158.0 | 52614 | 0.6015 | 0.8164 |
212
+ | 0.9873 | 159.0 | 52947 | 0.6001 | 0.8152 |
213
+ | 1.0471 | 160.0 | 53280 | 0.5988 | 0.8165 |
214
+ | 0.9178 | 161.0 | 53613 | 0.5936 | 0.8185 |
215
+ | 0.9738 | 162.0 | 53946 | 0.5894 | 0.8205 |
216
+ | 1.0487 | 163.0 | 54279 | 0.5969 | 0.8161 |
217
+ | 1.0434 | 164.0 | 54612 | 0.5946 | 0.8173 |
218
+ | 0.9916 | 165.0 | 54945 | 0.5960 | 0.8194 |
219
+ | 0.9596 | 166.0 | 55278 | 0.5890 | 0.8194 |
220
+ | 1.0006 | 167.0 | 55611 | 0.5910 | 0.8176 |
221
+ | 0.99 | 168.0 | 55944 | 0.5901 | 0.8195 |
222
+ | 1.0125 | 169.0 | 56277 | 0.5949 | 0.8185 |
223
+ | 1.0714 | 170.0 | 56610 | 0.5907 | 0.8193 |
224
+ | 1.011 | 171.0 | 56943 | 0.5952 | 0.8201 |
225
+ | 0.9099 | 172.0 | 57276 | 0.5905 | 0.8169 |
226
+ | 0.9879 | 173.0 | 57609 | 0.5955 | 0.8201 |
227
+ | 1.0559 | 174.0 | 57942 | 0.5892 | 0.8197 |
228
+ | 1.0002 | 175.0 | 58275 | 0.5914 | 0.8201 |
229
+ | 0.9461 | 176.0 | 58608 | 0.5866 | 0.8214 |
230
+ | 0.9624 | 177.0 | 58941 | 0.5870 | 0.8228 |
231
+ | 0.9952 | 178.0 | 59274 | 0.5920 | 0.8199 |
232
+ | 1.0415 | 179.0 | 59607 | 0.5926 | 0.8193 |
233
+ | 1.0416 | 180.0 | 59940 | 0.5901 | 0.8206 |
234
+ | 0.9467 | 181.0 | 60273 | 0.5911 | 0.8216 |
235
+ | 0.9783 | 182.0 | 60606 | 0.5832 | 0.8206 |
236
+ | 0.9147 | 183.0 | 60939 | 0.5881 | 0.8223 |
237
+ | 0.9848 | 184.0 | 61272 | 0.5898 | 0.8218 |
238
+ | 0.9454 | 185.0 | 61605 | 0.5916 | 0.8201 |
239
+ | 1.0287 | 186.0 | 61938 | 0.5880 | 0.8222 |
240
+ | 0.9336 | 187.0 | 62271 | 0.5856 | 0.8221 |
241
+ | 1.0148 | 188.0 | 62604 | 0.5903 | 0.8205 |
242
+ | 0.9184 | 189.0 | 62937 | 0.5811 | 0.8217 |
243
+ | 1.2194 | 190.0 | 63270 | 0.5852 | 0.8214 |
244
+ | 0.9717 | 191.0 | 63603 | 0.5873 | 0.8204 |
245
+ | 1.0003 | 192.0 | 63936 | 0.5836 | 0.8239 |
246
+ | 0.9657 | 193.0 | 64269 | 0.5806 | 0.8243 |
247
+ | 0.9865 | 194.0 | 64602 | 0.5839 | 0.8225 |
248
+ | 0.9642 | 195.0 | 64935 | 0.5850 | 0.8219 |
249
+ | 0.9839 | 196.0 | 65268 | 0.5815 | 0.8246 |
250
+ | 0.999 | 197.0 | 65601 | 0.5787 | 0.8252 |
251
+ | 0.9957 | 198.0 | 65934 | 0.5854 | 0.821 |
252
+ | 0.9442 | 199.0 | 66267 | 0.5894 | 0.8189 |
253
+ | 1.1311 | 200.0 | 66600 | 0.5785 | 0.8235 |
254
+ | 0.9542 | 201.0 | 66933 | 0.5783 | 0.824 |
255
+ | 0.9352 | 202.0 | 67266 | 0.5811 | 0.8231 |
256
+ | 0.9764 | 203.0 | 67599 | 0.5898 | 0.8198 |
257
+ | 0.9557 | 204.0 | 67932 | 0.5757 | 0.8239 |
258
+ | 0.9073 | 205.0 | 68265 | 0.5838 | 0.8227 |
259
+ | 0.9087 | 206.0 | 68598 | 0.5784 | 0.8234 |
260
+ | 0.9194 | 207.0 | 68931 | 0.5789 | 0.8212 |
261
+ | 0.9406 | 208.0 | 69264 | 0.5724 | 0.826 |
262
+ | 0.8866 | 209.0 | 69597 | 0.5773 | 0.8247 |
263
+ | 1.0926 | 210.0 | 69930 | 0.5830 | 0.8232 |
264
+ | 0.9185 | 211.0 | 70263 | 0.5780 | 0.8246 |
265
+ | 0.9636 | 212.0 | 70596 | 0.5779 | 0.8252 |
266
+ | 0.9503 | 213.0 | 70929 | 0.5781 | 0.8242 |
267
+ | 0.9006 | 214.0 | 71262 | 0.5856 | 0.8237 |
268
+ | 0.9294 | 215.0 | 71595 | 0.5737 | 0.8244 |
269
+ | 1.0017 | 216.0 | 71928 | 0.5802 | 0.8245 |
270
+ | 0.9228 | 217.0 | 72261 | 0.5796 | 0.8243 |
271
+ | 0.9644 | 218.0 | 72594 | 0.5859 | 0.8219 |
272
+ | 0.8991 | 219.0 | 72927 | 0.5795 | 0.8235 |
273
+ | 1.1149 | 220.0 | 73260 | 0.5778 | 0.8253 |
274
+ | 0.9295 | 221.0 | 73593 | 0.5785 | 0.8251 |
275
+ | 0.9376 | 222.0 | 73926 | 0.5770 | 0.8255 |
276
+ | 0.8995 | 223.0 | 74259 | 0.5791 | 0.8251 |
277
+ | 0.8994 | 224.0 | 74592 | 0.5716 | 0.8266 |
278
+ | 0.908 | 225.0 | 74925 | 0.5742 | 0.825 |
279
+ | 0.9579 | 226.0 | 75258 | 0.5762 | 0.8234 |
280
+ | 0.9263 | 227.0 | 75591 | 0.5745 | 0.8247 |
281
+ | 0.9343 | 228.0 | 75924 | 0.5736 | 0.8273 |
282
+ | 0.8955 | 229.0 | 76257 | 0.5760 | 0.8248 |
283
+ | 1.063 | 230.0 | 76590 | 0.5766 | 0.8259 |
284
+ | 0.9331 | 231.0 | 76923 | 0.5766 | 0.826 |
285
+ | 0.9409 | 232.0 | 77256 | 0.5826 | 0.8242 |
286
+ | 0.9361 | 233.0 | 77589 | 0.5717 | 0.8279 |
287
+ | 0.922 | 234.0 | 77922 | 0.5722 | 0.8262 |
288
+ | 0.9189 | 235.0 | 78255 | 0.5670 | 0.8278 |
289
+ | 0.835 | 236.0 | 78588 | 0.5674 | 0.8274 |
290
+ | 1.0082 | 237.0 | 78921 | 0.5738 | 0.8256 |
291
+ | 0.9356 | 238.0 | 79254 | 0.5701 | 0.8277 |
292
+ | 0.888 | 239.0 | 79587 | 0.5701 | 0.8267 |
293
+ | 1.2103 | 240.0 | 79920 | 0.5770 | 0.8237 |
294
+ | 0.9076 | 241.0 | 80253 | 0.5892 | 0.8223 |
295
+ | 0.8956 | 242.0 | 80586 | 0.5717 | 0.8264 |
296
+ | 0.8968 | 243.0 | 80919 | 0.5747 | 0.8238 |
297
+ | 0.9055 | 244.0 | 81252 | 0.5746 | 0.8246 |
298
+ | 0.8601 | 245.0 | 81585 | 0.5729 | 0.8269 |
299
+ | 0.9811 | 246.0 | 81918 | 0.5691 | 0.8257 |
300
+ | 0.9001 | 247.0 | 82251 | 0.5832 | 0.8247 |
301
+ | 0.9668 | 248.0 | 82584 | 0.5769 | 0.8268 |
302
+ | 0.9281 | 249.0 | 82917 | 0.5740 | 0.8257 |
303
+ | 0.9167 | 250.0 | 83250 | 0.5753 | 0.8265 |
304
+ | 1.0039 | 251.0 | 83583 | 0.5730 | 0.8273 |
305
+ | 0.9624 | 252.0 | 83916 | 0.5667 | 0.8291 |
306
+ | 0.8988 | 253.0 | 84249 | 0.5751 | 0.8255 |
307
+ | 1.0041 | 254.0 | 84582 | 0.5718 | 0.8267 |
308
+ | 0.8924 | 255.0 | 84915 | 0.5741 | 0.8253 |
309
+ | 0.9587 | 256.0 | 85248 | 0.5665 | 0.8277 |
310
+ | 0.959 | 257.0 | 85581 | 0.5679 | 0.8292 |
311
+ | 0.8092 | 258.0 | 85914 | 0.5719 | 0.8281 |
312
+ | 0.9023 | 259.0 | 86247 | 0.5692 | 0.8282 |
313
+ | 1.0531 | 260.0 | 86580 | 0.5707 | 0.8271 |
314
+ | 0.9112 | 261.0 | 86913 | 0.5704 | 0.8259 |
315
+ | 0.8781 | 262.0 | 87246 | 0.5741 | 0.826 |
316
+ | 0.8708 | 263.0 | 87579 | 0.5654 | 0.829 |
317
+ | 0.8706 | 264.0 | 87912 | 0.5743 | 0.8259 |
318
+ | 0.8743 | 265.0 | 88245 | 0.5671 | 0.8283 |
319
+ | 0.9297 | 266.0 | 88578 | 0.5726 | 0.8294 |
320
+ | 0.9017 | 267.0 | 88911 | 0.5752 | 0.8282 |
321
+ | 0.9106 | 268.0 | 89244 | 0.5732 | 0.8268 |
322
+ | 0.8829 | 269.0 | 89577 | 0.5750 | 0.827 |
323
+ | 1.1097 | 270.0 | 89910 | 0.5733 | 0.8277 |
324
+ | 0.9004 | 271.0 | 90243 | 0.5688 | 0.8291 |
325
+ | 0.8734 | 272.0 | 90576 | 0.5707 | 0.8275 |
326
+ | 0.8877 | 273.0 | 90909 | 0.5711 | 0.8265 |
327
+ | 0.9416 | 274.0 | 91242 | 0.5672 | 0.8273 |
328
+ | 0.9037 | 275.0 | 91575 | 0.5689 | 0.8284 |
329
+ | 0.8345 | 276.0 | 91908 | 0.5695 | 0.8299 |
330
+ | 0.8627 | 277.0 | 92241 | 0.5740 | 0.8277 |
331
+ | 0.8964 | 278.0 | 92574 | 0.5756 | 0.8262 |
332
+ | 0.8793 | 279.0 | 92907 | 0.5728 | 0.8268 |
333
+ | 1.0857 | 280.0 | 93240 | 0.5671 | 0.8306 |
334
+ | 0.8668 | 281.0 | 93573 | 0.5685 | 0.8305 |
335
+ | 0.9051 | 282.0 | 93906 | 0.5751 | 0.8299 |
336
+ | 0.9183 | 283.0 | 94239 | 0.5746 | 0.8267 |
337
+ | 0.9507 | 284.0 | 94572 | 0.5699 | 0.8262 |
338
+ | 0.8783 | 285.0 | 94905 | 0.5745 | 0.8289 |
339
+ | 0.8942 | 286.0 | 95238 | 0.5745 | 0.8262 |
340
+ | 0.8369 | 287.0 | 95571 | 0.5688 | 0.8288 |
341
+ | 0.9278 | 288.0 | 95904 | 0.5660 | 0.8287 |
342
+ | 0.9285 | 289.0 | 96237 | 0.5707 | 0.8285 |
343
+ | 0.9858 | 290.0 | 96570 | 0.5668 | 0.829 |
344
+ | 0.8783 | 291.0 | 96903 | 0.5781 | 0.8261 |
345
+ | 0.9269 | 292.0 | 97236 | 0.5681 | 0.8277 |
346
+ | 0.9153 | 293.0 | 97569 | 0.5691 | 0.8271 |
347
+ | 0.8814 | 294.0 | 97902 | 0.5692 | 0.8273 |
348
+ | 0.915 | 295.0 | 98235 | 0.5755 | 0.8269 |
349
+ | 0.9032 | 296.0 | 98568 | 0.5806 | 0.8228 |
350
+ | 0.9006 | 297.0 | 98901 | 0.5719 | 0.8273 |
351
+ | 0.8629 | 298.0 | 99234 | 0.5732 | 0.8262 |
352
+ | 0.887 | 299.0 | 99567 | 0.5658 | 0.828 |
353
+ | 1.0707 | 300.0 | 99900 | 0.5732 | 0.8286 |
354
+
355
+
356
+ ### Framework versions
357
+
358
+ - Transformers 4.39.3
359
+ - Pytorch 2.2.2+cu118
360
+ - Datasets 2.18.0
361
+ - Tokenizers 0.15.2
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dr_accuracy": 0.9128705882352941,
3
+ "dr_loss": 0.28069740533828735,
4
+ "dr_runtime": 17.764,
5
+ "dr_samples_per_second": 2392.476,
6
+ "dr_steps_per_second": 9.401,
7
+ "epoch": 300.0,
8
+ "test_accuracy": 0.8306,
9
+ "test_loss": 0.5670732259750366,
10
+ "test_runtime": 5.7136,
11
+ "test_samples_per_second": 1750.217,
12
+ "test_steps_per_second": 7.001,
13
+ "train_loss": 1.232413830227322,
14
+ "train_runtime": 17888.831,
15
+ "train_samples_per_second": 712.735,
16
+ "train_steps_per_second": 5.584
17
+ }
config.json ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/resnet-50",
3
+ "architectures": [
4
+ "ResNetForImageClassification"
5
+ ],
6
+ "depths": [
7
+ 3,
8
+ 4,
9
+ 6,
10
+ 3
11
+ ],
12
+ "downsample_in_bottleneck": false,
13
+ "downsample_in_first_stage": false,
14
+ "embedding_size": 64,
15
+ "finetuning_task": "image-classification",
16
+ "hidden_act": "relu",
17
+ "hidden_sizes": [
18
+ 256,
19
+ 512,
20
+ 1024,
21
+ 2048
22
+ ],
23
+ "id2label": {
24
+ "0": "apple",
25
+ "1": "aquarium_fish",
26
+ "10": "bowl",
27
+ "11": "boy",
28
+ "12": "bridge",
29
+ "13": "bus",
30
+ "14": "butterfly",
31
+ "15": "camel",
32
+ "16": "can",
33
+ "17": "castle",
34
+ "18": "caterpillar",
35
+ "19": "cattle",
36
+ "2": "baby",
37
+ "20": "chair",
38
+ "21": "chimpanzee",
39
+ "22": "clock",
40
+ "23": "cloud",
41
+ "24": "cockroach",
42
+ "25": "couch",
43
+ "26": "cra",
44
+ "27": "crocodile",
45
+ "28": "cup",
46
+ "29": "dinosaur",
47
+ "3": "bear",
48
+ "30": "dolphin",
49
+ "31": "elephant",
50
+ "32": "flatfish",
51
+ "33": "forest",
52
+ "34": "fox",
53
+ "35": "girl",
54
+ "36": "hamster",
55
+ "37": "house",
56
+ "38": "kangaroo",
57
+ "39": "keyboard",
58
+ "4": "beaver",
59
+ "40": "lamp",
60
+ "41": "lawn_mower",
61
+ "42": "leopard",
62
+ "43": "lion",
63
+ "44": "lizard",
64
+ "45": "lobster",
65
+ "46": "man",
66
+ "47": "maple_tree",
67
+ "48": "motorcycle",
68
+ "49": "mountain",
69
+ "5": "bed",
70
+ "50": "mouse",
71
+ "51": "mushroom",
72
+ "52": "oak_tree",
73
+ "53": "orange",
74
+ "54": "orchid",
75
+ "55": "otter",
76
+ "56": "palm_tree",
77
+ "57": "pear",
78
+ "58": "pickup_truck",
79
+ "59": "pine_tree",
80
+ "6": "bee",
81
+ "60": "plain",
82
+ "61": "plate",
83
+ "62": "poppy",
84
+ "63": "porcupine",
85
+ "64": "possum",
86
+ "65": "rabbit",
87
+ "66": "raccoon",
88
+ "67": "ray",
89
+ "68": "road",
90
+ "69": "rocket",
91
+ "7": "beetle",
92
+ "70": "rose",
93
+ "71": "sea",
94
+ "72": "seal",
95
+ "73": "shark",
96
+ "74": "shrew",
97
+ "75": "skunk",
98
+ "76": "skyscraper",
99
+ "77": "snail",
100
+ "78": "snake",
101
+ "79": "spider",
102
+ "8": "bicycle",
103
+ "80": "squirrel",
104
+ "81": "streetcar",
105
+ "82": "sunflower",
106
+ "83": "sweet_pepper",
107
+ "84": "table",
108
+ "85": "tank",
109
+ "86": "telephone",
110
+ "87": "television",
111
+ "88": "tiger",
112
+ "89": "tractor",
113
+ "9": "bottle",
114
+ "90": "train",
115
+ "91": "trout",
116
+ "92": "tulip",
117
+ "93": "turtle",
118
+ "94": "wardrobe",
119
+ "95": "whale",
120
+ "96": "willow_tree",
121
+ "97": "wolf",
122
+ "98": "woman",
123
+ "99": "worm"
124
+ },
125
+ "label2id": {
126
+ "apple": "0",
127
+ "aquarium_fish": "1",
128
+ "baby": "2",
129
+ "bear": "3",
130
+ "beaver": "4",
131
+ "bed": "5",
132
+ "bee": "6",
133
+ "beetle": "7",
134
+ "bicycle": "8",
135
+ "bottle": "9",
136
+ "bowl": "10",
137
+ "boy": "11",
138
+ "bridge": "12",
139
+ "bus": "13",
140
+ "butterfly": "14",
141
+ "camel": "15",
142
+ "can": "16",
143
+ "castle": "17",
144
+ "caterpillar": "18",
145
+ "cattle": "19",
146
+ "chair": "20",
147
+ "chimpanzee": "21",
148
+ "clock": "22",
149
+ "cloud": "23",
150
+ "cockroach": "24",
151
+ "couch": "25",
152
+ "cra": "26",
153
+ "crocodile": "27",
154
+ "cup": "28",
155
+ "dinosaur": "29",
156
+ "dolphin": "30",
157
+ "elephant": "31",
158
+ "flatfish": "32",
159
+ "forest": "33",
160
+ "fox": "34",
161
+ "girl": "35",
162
+ "hamster": "36",
163
+ "house": "37",
164
+ "kangaroo": "38",
165
+ "keyboard": "39",
166
+ "lamp": "40",
167
+ "lawn_mower": "41",
168
+ "leopard": "42",
169
+ "lion": "43",
170
+ "lizard": "44",
171
+ "lobster": "45",
172
+ "man": "46",
173
+ "maple_tree": "47",
174
+ "motorcycle": "48",
175
+ "mountain": "49",
176
+ "mouse": "50",
177
+ "mushroom": "51",
178
+ "oak_tree": "52",
179
+ "orange": "53",
180
+ "orchid": "54",
181
+ "otter": "55",
182
+ "palm_tree": "56",
183
+ "pear": "57",
184
+ "pickup_truck": "58",
185
+ "pine_tree": "59",
186
+ "plain": "60",
187
+ "plate": "61",
188
+ "poppy": "62",
189
+ "porcupine": "63",
190
+ "possum": "64",
191
+ "rabbit": "65",
192
+ "raccoon": "66",
193
+ "ray": "67",
194
+ "road": "68",
195
+ "rocket": "69",
196
+ "rose": "70",
197
+ "sea": "71",
198
+ "seal": "72",
199
+ "shark": "73",
200
+ "shrew": "74",
201
+ "skunk": "75",
202
+ "skyscraper": "76",
203
+ "snail": "77",
204
+ "snake": "78",
205
+ "spider": "79",
206
+ "squirrel": "80",
207
+ "streetcar": "81",
208
+ "sunflower": "82",
209
+ "sweet_pepper": "83",
210
+ "table": "84",
211
+ "tank": "85",
212
+ "telephone": "86",
213
+ "television": "87",
214
+ "tiger": "88",
215
+ "tractor": "89",
216
+ "train": "90",
217
+ "trout": "91",
218
+ "tulip": "92",
219
+ "turtle": "93",
220
+ "wardrobe": "94",
221
+ "whale": "95",
222
+ "willow_tree": "96",
223
+ "wolf": "97",
224
+ "woman": "98",
225
+ "worm": "99"
226
+ },
227
+ "layer_type": "bottleneck",
228
+ "model_type": "resnet",
229
+ "num_channels": 3,
230
+ "out_features": [
231
+ "stage4"
232
+ ],
233
+ "out_indices": [
234
+ 4
235
+ ],
236
+ "problem_type": "single_label_classification",
237
+ "stage_names": [
238
+ "stem",
239
+ "stage1",
240
+ "stage2",
241
+ "stage3",
242
+ "stage4"
243
+ ],
244
+ "torch_dtype": "float32",
245
+ "transformers_version": "4.39.3"
246
+ }
dr_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dr_accuracy": 0.9128705882352941,
3
+ "dr_loss": 0.28069740533828735,
4
+ "dr_runtime": 17.764,
5
+ "dr_samples_per_second": 2392.476,
6
+ "dr_steps_per_second": 9.401,
7
+ "epoch": 300.0
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e688d5361d79fcb945f8e0898a3e61d28a45854c2c65386baaa70a2983e6847
3
+ size 95106288
preprocessor_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "crop_pct",
7
+ "resample",
8
+ "do_rescale",
9
+ "rescale_factor",
10
+ "do_normalize",
11
+ "image_mean",
12
+ "image_std",
13
+ "return_tensors",
14
+ "data_format",
15
+ "input_data_format"
16
+ ],
17
+ "crop_pct": 0.875,
18
+ "do_normalize": true,
19
+ "do_rescale": true,
20
+ "do_resize": true,
21
+ "image_mean": [
22
+ 0.485,
23
+ 0.456,
24
+ 0.406
25
+ ],
26
+ "image_processor_type": "ConvNextImageProcessor",
27
+ "image_std": [
28
+ 0.229,
29
+ 0.224,
30
+ 0.225
31
+ ],
32
+ "resample": 3,
33
+ "rescale_factor": 0.00392156862745098,
34
+ "size": {
35
+ "shortest_edge": 224
36
+ }
37
+ }
test_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 300.0,
3
+ "test_accuracy": 0.8306,
4
+ "test_loss": 0.5670732259750366,
5
+ "test_runtime": 5.7136,
6
+ "test_samples_per_second": 1750.217,
7
+ "test_steps_per_second": 7.001
8
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 300.0,
3
+ "train_loss": 1.232413830227322,
4
+ "train_runtime": 17888.831,
5
+ "train_samples_per_second": 712.735,
6
+ "train_steps_per_second": 5.584
7
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66e04ae516651b281eb15c23cb780bf74ba915db4e89540d71fc37f05e066a2d
3
+ size 4920